
What are Weak Links in the npm Supply Chain?
Nusrat Zahan1, Thomas Zimmermann2, Patrice Godefroid2, Brendan Murphy2, Chandra Maddila2, Laurie Williams1

1 North Carolina State University, Raleigh, NC, USA
[nzahan,lawilli3]@ncsu.edu

2 Microsoft Research, Redmond, Washington, USA
[tzimmer,pg,bmurphy,chmaddil]@microsoft.com

ABSTRACT
Modern software development frequently uses third-party pack-
ages, raising the concern of supply chain security attacks. Many at-
tackers target popular package managers, like npm, and their users
with supply chain attacks. In 2021 there was a 650% year-on-year
growth in security attacks by exploiting Open Source Software’s
supply chain. Proactive approaches are needed to predict package
vulnerability to high-risk supply chain attacks. The goal of this work
is to help software developers and security specialists in measuring
npm supply chain weak link signals to prevent future supply chain
attacks by empirically studying npm package metadata.

In this paper, we analyzed the metadata of 1.63 million JavaScript
npm packages. We propose six signals of security weaknesses in
a software supply chain, such as the presence of install scripts,
maintainer accounts associated with an expired email domain, and
inactive packages with inactive maintainers. One of our case studies
identified 11 malicious packages from the install scripts signal.
We also found 2,818 maintainer email addresses associated with
expired domains, allowing an attacker to hijack 8,494 packages by
taking over the npm accounts. We obtained feedback on our weak
link signals through a survey responded to by 470 npm package
developers. The majority of the developers supported three out of
our six proposed weak link signals. The developers also indicated
that they would want to be notified about weak links signals before
using third-party packages. Additionally, we discussed eight new
signals suggested by package developers.

KEYWORDS
Software Ecosystem, Supply Chain Security, npm, Weak link Signal

1 INTRODUCTION
Modern software development frequently uses third-party pack-
ages, raising the concern of supply chain security attacks. According
to Snyk [19], 96% of applications use third-party packages, and 80%
of the code in the software supply chain comes from third-party
packages. The scope and scale of the expanding supply chain also
come with high-security risks [36, 46]. Large package managers,
like npm, maintain a centralized repository where developers can

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
ICSE-SEIP ’22, May 21–29, 2022, Pittsburgh, PA, USA
© 2022 Association for Computing Machinery.
ACM ISBN 978-1-4503-9226-6/22/05. . . $15.00
https://doi.org/10.1145/3510457.3513044

access and add third-party packages to their dependency tree eas-
ily [12, 46]. Unfortunately, attackers can also leverage the same
features of npm and inject malicious package updates into a soft-
ware supply chain.

A recent report from Sonatype shows supply chain attacks has
increased 650% in 2021 on top of year-over-year growth of 430%
in 2020 [36] where attackers injected malicious code into benign
packages [5, 20, 34, 37, 43, 45]. An example of a sophisticated supply
chain attack is the SolarWinds attack [16]. SolarWinds is a propri-
etary cybersecurity monitoring solution [8, 19] whose customers
include 425 Fortune 500 companies and at least nine U.S. federal
agencies [8]. More than 100 companies and federal agencies were
exposed to the breach [10]. The attacker gained access to customer
networks, systems, and data through amalicious package update [8].
An incident of this magnitude raises significant concerns about the
consequences of supply chain attacks.

In supply chain attacks, instead of exploiting latent vulnerabili-
ties in source code, attackers inject malware directly into benign
code that is likely to be deployed by users [29, 36]. A common strat-
egy is to target the most commonly used packages in a dependency
chain to infect a maximum number of users [36]. In that way, bad
actors can execute an attack that will propagate throughout the
supply chain. Thus, popular large registries like npm, which hosts
1.8 million JavaScript packages as of 2021, are a highly targeted
malware distribution channel for attackers due to heavy growth
and dependence on JavaScript packages [14, 17, 21, 29, 36].

One way attackers can develop such supply chain attacks is by
following a data-driven attack strategy. For example, an attacker
can collect and analyze package metadata from the package reg-
istry to find and exploit the weakest links (e.g., less secure module,
maintainers) and then execute an attack in the targeted supply. The
dynamic nature of such attacks challenges conventional detection
methods [12, 14, 17, 29] because the attacks are new and spread fast
without the victim knowing where bad actors planted the malware
in the supply chain. Hence, practitioners need proactive approaches
to identify warnings, events that predict package susceptibility at
low cost measures to prevent future supply chain attacks.

The goal of this work is to help software developers and security
specialists in measuring npm supply chain weak link signals to prevent
future supply chain attacks by empirically studying npm package
metadata.

As we know the saying- "A chain is only as strong as its weakest
link". A weak signal is an indicator of an event or change that may
become significant in the future [40] and can break the supply chain.
In this study, we define a signal as a weak link if the signal
exposes a package to a higher risk of a supply chain attack
and an attacker can exploit the signal to execute a supply
chain attack. We focus on the relationship between neutral and

ar
X

iv
:2

11
2.

10
16

5v
2

 [
cs

.C
R

]
 1

4
Fe

b
20

22

https://doi.org/10.1145/3510457.3513044

ICSE-SEIP ’22, May 21–29, 2022, Pittsburgh, PA, USA N. Zahan et al.

suspicious metadata in a supply chain. We propose six weak link
signals for npm package dependencies. To that end, we perform an
empirical study on 1.63 million npm packages’ metadata to quantify
and prioritize weak link signals in the npm supply chain. Our work
addresses the following research questions:

• RQ1 (Quantification): What type of weak link signals ex-
ists in npm package supply chain?

• RQ2 (Agreement): How do practitioners perceive the pro-
posed weak link signals in the npm supply chain?

This paper makes the following contributions: First. Six pro-
posed weak link signals, three of which are confirmed as strong
signals from a survey completed by 470 npm package maintainers.
Second. Eight new weak link signals suggested by survey partic-
ipants. Third. A framework1 to collect, categorize and analyze
package metadata in npm registry to evaluate weak link signals.

2 BACKGROUND AND RELATEDWORK
A software supply chain attack is a cyber-attack that aims to infect
organizations and end-users by targeting less-secure components
in the supply chain [21]. The supply chain encompasses everything
that goes into or affects code from development through CI/CD
pipeline until production deployment. Package registries like npm
play an essential role in automating the software supply chain.
Unfortunately, increased automation comes with a higher security
risk. Supply chain attacks are considered critical because of the
increasing reliance on third-party packages as a direct and transitive
dependency. A single package dramatically increases a system’s
attack surface due to the “nested” nature of dependencies [46].
Therefore, we need to predict and prevent such weak links before
the malicious code is distributed in the supply chain.

2.1 Key Terminology
2.1.1 npm. is a platform for publishing and hosting JavaScript
packages which is the largest ecosystem to date. npm has a CLI
tool for publishing and installing packages, and separately it has
an online repository to host all the package and their metadata. All
npm packages contain a file, called package.json - a central place
to configure and describe how to interact with and run a package,
and npm used this data to manage a package installation or handle
the project’s dependencies [28].

2.1.2 Primary Stakeholders. Here, we discussed the relevant
stakeholder roles deeply connected with the supply chain that can
benefit from our research. Package Maintainers are responsible
for developing and maintaining packages. They may receive and
review pull requests from contributors and have write access to
make changes in different stages of package development. Pack-
age Contributors can view the source code and can suggest code
changes, and package maintainers approve their changes. Ecosys-
temAdministratorsmanage the package registry framework and
are responsible for maintaining the whole software ecosystem.

1Due to reduce malicious use of the scripts, please contact the authors for access to
the framework.

2.2 Attack Vector
Here, we overview the different attack vectors an attacker may use
to introduce a supply chain attack. 1)Malicious package release:
An attacker may publish malicious packages and hence trick other
users into installing or depending on such packages [12, 29]. 2)
Social Engineering: An attacker may manipulate a maintainer
to hand over sensitive information [46]. 3) Account Takeover:
An attacker may compromise the credentials of a maintainer to
inject malicious code under the maintainer’s name. 4) Ownership
transfer: An attacker can show enthusiasm to maintain popular
abandoned packages and transfer the ownership of a package [29].
5) Remote execution: An attacker may target a package by com-
promising the third-party services used by that package.

2.3 Research on Supply Chain Work
Many prior works have leveraged past supply chain records to show
how catastrophic a supply chain attack can be. Zimmermann et
al. [46] provided evidence that popular packages and highly active
developers in npm may suffer from single points of failure due to
large direct and transitive dependency. Ohm et al.’s study [29] inves-
tigated different supply chain attacks from 174 malicious packages
and contributed an enriched dataset for future research on mali-
cious package detection. Duan et al. [12] identified 339 malicious
packages from their proposed unsupervised learning framework.
Gonzalez et al. [17] used repository and commit metadata to detect
malicious packages automatically.

Although security researchers in academia and industry are ac-
tively investigating attacks on registries and proposing solutions,
these approaches seem to be based on specific instances of mali-
cious attacks. They are especially effective to prevent malicious
code distribution. Recent attacks show evidence that out-of-the-box
exploit strategies will appear again and again [5, 42]. Any ad-hoc
solution is not enough to prevent an attack that we have not wit-
nessed yet. A better approach is needed to embrace a proactive
strategy that predicts package susceptibility as a potential threat
and help package managers and package maintainers adopt the
best security practice to stay ahead of the attackers.

3 RQ1: WEAK LINK SIGNALS
In this section, we describe our weak link signals and present quan-
tification of those signals to answer RQ1. We define a signal as a
weak link if the signal exposes a package to a higher risk of
a supply chain attack and an attacker can exploit the signal
to execute a supply chain attack. If a bad actor targets the sup-
ply chain, they are going to follow the path of least resistance [44],
for example, finding weakest links from publicly available pack-
age metadata without penetrating the whole source code. In this
study, we followed an approach the attackers might take to find
the weakest link in the npm registry. An accurate estimation of the
impact on a target application may not be given from a single weak
link signal but identifying multiple weak link signals from different
metadata aiming at a common target is probably a hints that this
target will be impacted in future.

One of the critical challenges in identifying the weak link signals
was selecting the suspicious candidate of metadata for further inves-
tigations. To overcome this, we took advantage of the prior reported

What are Weak Links in the npm Supply Chain? ICSE-SEIP ’22, May 21–29, 2022, Pittsburgh, PA, USA

supply chain attack patterns reported in literature [12, 15, 29] and
the author’s security domain expertise. Additionally, we discussed
our observation with security specialists from GitHub working on
npm supply chain security. Based on our discussion, we focused
on metadata associated with human involvement (e.g., maintainer,
contributor information) since many past attacks involved human
actors as a weak link to the package [4, 6, 13, 18, 20]. Then we se-
lected functional metadata (install scripts) [12, 15, 22, 23, 34, 37, 39,
42, 43, 45] that was exploited by attacker mostly. We also measure
the attack surface (e.g., dependency, dependents) to understand the
underlying reason that might lead to an attack attempt.

3.1 Data Process
3.1.1 Data Collection. We captured a snapshot of 1,630,101 pack-
age.json files on June 7, 2021 through the npm public API2. Each
JSON file contains metadata properties of an npm package. We used
the package ID (package name and version together form a unique
identifier called “ID”) as the primary reference while storing corre-
sponding metadata for each package. As a root, package ID maps to
all other metadata like dependency information, package last modi-
fied time, scripts, versions, license, repository, unpacked package
size, a total number of files, maintainers and contributors names
and email addresses. We used Python libraries (JSON,Numpy, Pan-
das, and Pyscopg2) to extract all the relevant metadata from each
package.json file which we stored systematically in a PostgreSQL
database. Each package.json file contained multiple versions history
of package metadata against one unique ID. In this study, we only
used the most recent version of the metadata to analyze our weak
link indicators. Apart from metadata extraction, we analyzed the
maintainer reach and package reach to understand the impact of a
package and its maintainers in the npm registry. Below we explain
how we queried and measured package and maintainer reach–
Package Reach: We measured the package reach to evaluate a pack-
age’s popularity in terms of dependents and downloads. Hence, we
considered two metrics: (1) the number of packages that depend on
a package (dependents), which we computed from a set of all the
packages that have a direct dependency on a package; and (2) the
number of downloads of a package in the past 12 months which we
collected from public npm API3.
Maintainer Reach: We measured the number of unique dependents
that depend on a maintainer’s packages to evaluate the maintainer
reach in npm. We queried against npm packages to compute main-
tainer reach, a set of unique packages where atleast one package of
the maintainer is listed as a package dependency.

3.1.2 Exclusion Criteria. We removed packages that might in-
troduce noise (for example, wrong ownership, invalid metadata,
etc.). In this study, we removed a package if the package has no
dependents and it meets with any one of the following IF
conditions:

First. If a package is tagged as a security holding package [11]
and is removed from the npm registry by the npm security team
due to malicious activities. Hence, the JSON file we received for
such packages consisted of dummy metadata filled by the npm
team. We removed 8,344 packages as security holding packages.
2https://replicate.npmjs.com/_all_docs?include_docs=true
3https://api.npmjs.org/downloads/point/{period}[/{package}]

The “descriptions” and “dis-tags” property of the package.json file
define the security holding status.

Second. If a package is deprecated [27], meaning, the package
is not actively maintained by the maintainers. The package.json file
contains a separate property called “deprecated” to indicate package
deprecated status, which is assigned by the npm administrators or
the maintainers themselves. Though a deprecated package does not
always indicate an unusable package, npm and maintainers recom-
mend using alternative packages or versions. While the deprecated
packages are not actively maintained, end-users might still use
them directly or transitively. Hence, we only removed deprecated
packages in the recent version if no other packages in the npm
registry used them in their dependency tree. We removed 37,917
deprecated packages that used by none.

Third. If a package hasno repository andno license. A reposi-
tory is essential to track, organize, and validate the source coderights
and a license allows the OSS community to reuse the code. A pack-
age without a license indicates that the authors retain all source
code [28] and no repository is attached to verify otherwise. We
have identified packages where both repository and license prop-
erty was null or filled with invalid values (e.g., “UNLICENSED”,
“XYZ”, “personal use” etc.). Hence, we only removed the packages
from further considerations if they meets all three conditions: 1)
no dependent and; 2) no license and; 3) no repository. We found
89,893 such packages and removed them from the database.

In total we removed 9%(135,996) packages that fits into our pro-
posed exclusion criteria, and our final dataset contained 1,494,105
packages, which were used for further analysis.

3.2 Weak Link Signals
We briefly discuss six weak link signals proposed in this study, their
attack models, and specific data analysis in this section.

3.2.1 W1: Expired Maintainer Domain. An attacker can hi-
jack a component if a maintainer’s domain is expired and
does not have 2FA authentication set up on their account. In
general, any domain name can be purchased from a domain regis-
trar allowing the purchaser to connect to an email hosting service
to get a personal email address. An attacker can hijack a user’s
domain to take over an account associated with that email address.
Typically, a domain hijacking attack occurs by 1) gaining unau-
thorized access to the registrar or 2) gaining access to the owner’s
email address and then resetting the password. Domain hijacking
is not a new notion. We have seen many attacks in the past, such
as 𝑝𝑒𝑟𝑙 .𝑐𝑜𝑚 hijacking [9], where the attacker changed the domain
registrar and renewed the domain expiration date until 2029, and
then changed the DNS address.

In the npm registry, an attacker can execute a more simplistic
approach to hijack an email address. An attacker can track the
domain of a maintainer in the domain registrar site. If the domain is
expired and available for sale, the attacker can register and alter the
DNS “mail exchange” (MX) records to hijack the maintainer’s email
address. In most cases, maintainer accounts are associated with
an email address in the package registry. One could reset a npm
account directly by email address unless the maintainer activated
2FA authentication or used different email address in user account.

https://replicate.npmjs.com/_all_docs?include_docs=true
https://api.npmjs.org/downloads/point/{period}[/{package}]

ICSE-SEIP ’22, May 21–29, 2022, Pittsburgh, PA, USA N. Zahan et al.

Analysis of npm maintainers domain: To collect the main-
tainer email address, we extracted and stored the maintainer name
and email address from each package.json file. We then queried
and split the domain name from each email address and counted
the number of times a domain is used across all npm packages. Out
of 93K domains in the 1.63M npm packages, 86% were unique (ap-
peared once), while the rest were from the public or organizational
domain. We hypothesize that all maintainer domains in the npm
registry are up-to-date, and none of them are available for sale. To
that end, we performed a bulk query of 93K domains in Godaddy a
domain registrar site. We found 5,346 domains are available for sale.
We picked a random sample of 50 domains to determine the true
positive rate and checked each domain independently in Godaddy.
We found 33 of them are not for sale. Due to the high false-positive
rate, we manually verified 5,346 domains in Godaddy.

We found 2,818 maintainer’s domains are available for sale
and can be purchased. These maintainers own 8,494 pack-
ages in the npm registry with average direct dependents of
2.43 packages and average downloads of 53K in the past 12
months.

We reported our findings to the npm security team to validate
the email address for npm user accounts. We note that our bulk
query may have a high false-negative rate since we found 47% false
positive from the 5,346 domain. Hence,npm may have more than
2,818 maintainers associated with expired domains

3.2.2 W2: Installation Script: An attacker can use installa-
tion scripts to run commands that perform malicious acts
through the package installation step [38]. Install scripts run
automatically either before, during, or after package installation
when certain events are triggered. These scripts are used to make
the installation process easy since they are automatically run by
npm. However, for an attacker, such scripts create opportunities
where “sky is the limit”. The attacker could steal user-sensitive data
or execute a new child process to create backdoor access or gain ac-
cess to execute a series of commands remotely [12, 15, 34, 37, 43, 45].
Alternatively, the attacker can infiltrate the third-party dependence
since that installation script will run automatically by the targeted
package and its users during installation. The rc, coa, ua-parser-
js [33], CCleaner [22], Solarwinds [8], NotPetya [23], and Adver-
line [39] data breaches are examples of such attacks where attackers
targeted the remote server, third-party vendors to execute a large
supply chain attack. Though the presence of installation scripts
themselves are not a direct indication of maliciousness, the priv-
ilege to run automatically makes installation scripts a weak link
signal in the supply chain. As best practices, even npm registry
recommends avoiding install script- “Don’t use install...You should
almost never have to explicitly set a preinstall or install script.”4.While
evidence of such an attack through the installations script is not
rare [12, 15, 22, 23, 34, 37, 39, 42, 43, 45], similar or perhaps even
worse, attacks may happen in the future.

Analysis of npm packages: To collect script details, we ex-
tracted and stored the script key, which is the script’s name (e.g.preinstall)
and the script value which contains the script path/shell commands

4https://docs.npmjs.com/cli/v7/using-npm/scripts

from the package.json file. Then, we query and separate all the
packages that have script keys like “%Install%”.

We found 2.2% (33,249) of packages use install scripts, indicat-
ing that 97.8% of packages may follow npm recommendation
of not using the install script as best security practices.

Additionally, we collected 3,635 malicious packages.json files
from npm. They are similar to the security holding package.json file
(see Section 3.1.2) with all dummy metadata. The only difference
is that these JSON files have actual malicious script key and value
pair, for example- the original directory of malicious code files or
malicious shell script embedded in JSON files with other dummy
metadata. To analyze the malicious JSON file, two researchers sepa-
rately reviewed these scripts and compared results for verification.
Since the scope of the project was limited to package.json files only,
we were only able to analyze 485 (out of 3,635) packages where
malicious shell command was embedded directly in the JSON file
and 442 of them were in install scripts. From our analysis, we found
four types of attack patterns that attackers use frequently-

• Transfer Users data to third party server (e.g.- hostname,
etc/shadow, /etc/passwd,/home/<user>/.ssh). We found 344
packages that communicate and transfer data with third
party server.

• Download malicious tool and run it to user machine. For
example- download a crypto miner software and run it on
user machine. We found 115 packages.

• Reverse Shell 12 packages opened reverse shell and transfer
data to third party server.

• Removed directories 14 packages removed file/folder from
current directories.

We found 93.9% (3,412) of malicious packages had atleast one
install scripts, indicating that malicious attackers use install
scripts frequently.

3.2.3 W3:UnmaintainedPackage. Attackers can target pack-
ages that are more likely to take over and sneak in malware
due to lack of maintenance. Differentiating between unmain-
tained and feature-complete packages that require no further re-
leases is complex and ambiguous [41]. Even if the package may not
require any maintenance by itself, it may need maintenance due to
security issues in its dependencies or use new syntax to improve
performance, bug fixing & documentation improvements. In 2020,
the average time to remediate security issues was 68 days in open
source projects [25] and 66% of security vulnerabilities in npm pack-
ages remain unpatched [35]. Hence, the time required to remediate
a security issue in unmaintained packages remains unknown. We
considered unmaintained packages from two directions: 1) Inactive
packages; and 2) Inactive maintainers.

Inactive Packages: We considered a package inactive if the
package’s last modification time in the package.json file is past two
years. Other prior work [35, 41] has defined inactivity as one year
gap. However, many npm packages have low complexity with a
few lines of code and may not require any recent update. Thus, we
consider two years as an inactivity period.

https://docs.npmjs.com/cli/v7/using-npm/scripts

What are Weak Links in the npm Supply Chain? ICSE-SEIP ’22, May 21–29, 2022, Pittsburgh, PA, USA

An attacker can exploit vulnerabilities in all applications that
directly or transitively depend on vulnerable code as long as the
vulnerable dependency or the package itself remains unfixed [46].
The response time to fix such issues is undetermined for inactive
packages, and end-usersmay remain infected due to unawareness of
the security threat. A deprecated package (see Section 3.1.2) exposes
even higher security risk since the maintainers no longer maintain
the package to fix security issues. An attacker can inject malware
in widely used but unmaintained packages. A prominent example
of such an attack is the “Mailparser” attack [7], an old deprecated
package. An attacker indirectly reaches the “MailParser” through a
relatively new package named “getcookies”, which had indirectly
been made into the nested dependency chain of MailParser.

Inactive Maintainers:We defined an inactive maintainer if the
maintainer had no active packages in the past two years. An at-
tacker can target packages with inactive maintainer(s) because any
attack will remain undetected due to the inactivity of maintainers.
Therefore, distinguishing between active and inactive maintain-
ers is necessary to identify the packages that require maintenance.
Although inactive maintainer’s packages are a subset of inactive
packages, we must identify them separately. Because an inactive
package may have maintainers who are active in other packages,
whereas inactive maintainers indicate the maintainer is inactive in
the entire npm registry.

Analysis of npmpackages:We extracted and stored the “time”
property of the package.json file to measure the number of pack-
ages that have been inactive for the past two years. We identified
inactive maintainers by evaluating the last modified time proper-
ties for all packages corresponding to an individual maintainer. A
package where none of the maintainers are active elsewhere in
the entire package registry is determined as inactive maintainers
of unmaintained packages. We also considered deprecated pack-
ages as unmaintained since they are unmaintained officially by the
maintainer. We separated the deprecated package where the last
modification time passed our threshold value because the depreca-
tion was declared later.

We found 58.7% of packages and 44.3% of maintainers are
inactive in the npm registry. There are 5,532 additional dep-
recated packages where the deprecation date passed our
threshold value.

The package.json does not provide individual maintainer activi-
ties history. Hence, distinguishing inactive maintainers from active
packages was not plausible.

3.2.4 W4: ToomanyMaintainers. A package with toomany
maintainers will provide an attackermany targets to exploit
account takeover and social engineering attacks. Having too
many maintainers requires security assurance of many maintainers.
The open nature of open source software and npm not enforcing the
two-factor authentication make it harder to ensure the maintainer’s
secure account. Bad actors may leverage the possible oversight of a
large team and hide their identity by compromising one maintainer
profile or performing social engineering to access the package. The
fewer number of maintainers facilitates better security in terms of
better communication.

Our hypothesis is supported by previous work of Meneely et
al. [24] where they empirically showed projects with more develop-
ers has more vulnerabilities. Zimmermann et al. [46] also addressed
our concern where they suggested that the value of over 20 main-
tainers in a npm package is questionable. A recent attack on inactive
rc and coa [33] packages shows that additional or inactive main-
tainers pose a security threat. In both packages, malicious code was
injected via the compromised maintainer’s account in November.
Since the attack, the current version has fewer maintainers than
before. Though we do not know how the attacker compromised the
maintainer account, we have observed the change in maintainer
metadata after the attack was resolved.

Analysis of npmpackages: Though the exact number of main-
tainers varies from project to project, in case of npm the number of
maintainers is more likely to be less because npm is building upon
reusing small JavaScript libraries. 1.5 million npm packages have
an average cost of 1.7 maintainers, which makes sense as small
packages may not require many maintainers. Hence, analyzing the
whole data set is not practical to identify the unusual package with
too many maintainers. We picked the top 1% (14,941) packages
in npm ranked by the total number of maintainers. We extracted
and stored the list of maintainers corresponding to each package
in a SQL database and then ranked them by the total number of
maintainers in the package.

We found that our selected 1% packages had an average of
32.4 maintainers per package, which was 19 times more than
average package maintainers in the entire registry.

3.2.5 W5: Too many contributors. An attacker can sneak
in malicious code, bypassing the maintainer’s radar when a
maintainer is responsible for many contributors.Many prior
research shows that when multiple contributors change a file, the
file is more likely to have more failures [1, 2, 24, 26] which may
include security issues. These observations motivated our next
signal: A maintainer-to-contributors ratio or increased number of
contributors increases the security risks.

Contributors may vary in knowledge, skill, and experience. Pack-
age quality will inevitably suffer if the maintainers do not pay
enough attention to review the pull request from contributors. Es-
pecially where an average of 1.7 maintainers maintain JavaScript
packages, many contributors bring additional responsibility for
maintainers in product functionality or security. If the maintainers
do not pay enough attention, contributors with malicious purposes
can include potential backdoors into code, and malicious code will
merge. An attacker can target packages with many contributors
where the attacker can do social engineering to become a trusted
contributor and make some minor contribution to gain trust and
then sneak in malicious code.

Analysis of npm packages:We extracted and stored the con-
tributor(s) list from package.json files. We measured the ratio be-
tween the total number of maintainers to the total number of con-
tributors of corresponding packages. Out of 1.5 million npm pack-
ages, only 2.6% (38,913) of the packages have listed contributors,
and the average maintainer to contributors ratio is 3:2. To under-
stand the extreme cases where package maintainers added many

ICSE-SEIP ’22, May 21–29, 2022, Pittsburgh, PA, USA N. Zahan et al.

contributors, we picked the top 1% packages in npm where the
maintainer to contributor ratio was minimum.

We found that the selected 1% (389) packages had an average
maintainer to contributor’s ratio of 1:40, which was 60 times
more than the average ratio.

3.2.6 W6: Overloaded Maintainer. An attacker may target
a maintainer who owns many packages because the main-
tainer may not have enough time to maintain security of
all the packages. Overloaded maintainers are weak links if the
maintainers 1) have a large number of dependents; 2) use a large
dependency chain in packages, attackers may inject malware in
their dependency; or 3) if they have many inactive packages, an
attacker may try to take over those packages. A well-known attack
on an overloading maintainer is event-stream attack [20], where an
original maintainer handed over a popular npm package ownership
to a malicious maintainer simply because the package was inactive
and the original maintainer does not need that package anymore.
We queried the same maintainer in our database. We found that he
is an overloaded maintainer, and he owns 62% inactive packages
with more than 30k direct dependents. Although one may argue
that a maintainer who owns many packages may consider as a sign
of stability over any new maintainer. while we agree with the state-
ment, we want to include such a maintainer to the supply chain
administrator’s security radar. Attackers are more likely to target
such maintainers if the maintainer is overloaded and does not have
enough time to maintain all of his packages equally. We propose the
supply chain administrator should follow up the security measure
of overloading maintainers such as minimum package dependency,
ownership transfer of inactive packages, two-factor authorization
set up on their account, active domain registration.

Analysis of overloaded maintainers:We analyzed the over-
loaded maintainer using our maintainer reach metric (section 3.1).
We found that 48.2% maintainers own more than one package,
whereas only 24.8% have downstream users. We again picked the
top 1%(4,743) maintainers ranked by higher maintainer reach to
understand the extreme cases.

We found that the top 1% maintainers own an average num-
ber of 180.3 packages with direct dependents of 4,010 average
packages

We analyzed further to understand risk factors associated with
inactive packages and downstream dependencies. We found that
30% (1,442) of maintainers do not hold any inactive packages, how-
ever, 70% shows otherwise. In terms of package dependency, we
found that 80% of packages have dependencies, which indicates
that overloading maintainers are responsible for their dependency
chain security to protect the downstream users.

4 CASE STUDY
This section provides three case studies of our proposed weak
link signals. First, we present our analysis in popular packages. We
hypothesize that the popular package maintainers are aware of such
weak links and will avoid them to protect the downstream user’s
security. Second, we present a case study on malicious packages

identified by our signals, and at the end, we present an example of
a data-driven supply chain attack.

4.1 Case study #1: Popular packages
Considering 650% growth in supply chain attacks as an indica-
tion [36], attackers will likely continue to target popular packages
and maintainers as a preferred path to exploit downstream victims
at scale. Hence, we analyzed whether weak link signals exist in
popular packages.

To measure package popularity, we used the package reach met-
rics from Section 3.1. We picked the top 10,000 packages from 1)
package dependents and 2) package downloads analysis; and com-
bined the two lists, removing duplicates, into a combined popular
package sample. The sample included 14,892 packages (1% of total
packages) as popular with an average of 937.4 dependents and 88.5
million downloads in 12 months. We note that the popular package
analysis does not consider transitive dependents. Hence, the impact
of a weak link in a popular package may present a higher supply
chain risk than presented.

Expired Domain (W1) Among the popular packages, 33 pack-
ages (average direct dependents: 382.9 and average downloads: 11.1
million) have at least one maintainer with an expired domain. These
accounts can be used to compromise the package unless two-factor
authentication is enabled.

W1: 12,637 packages that depend on popular packages were
exposed to higher supply chain risk due to expired domains.

Install Scripts (W2): Among the popular packages, 362 pack-
ages (average direct dependents: 1,416.3 and downloads average:
34.6 million) have install scripts. This is an encouraging result,
showing that 97.5% of popular packages are aware of the risks and
avoid using install scripts.

W2: 362 popular packages had install scripts and exposed
1,416 packages on average to attacks through install scripts.

Unmaintained Package (W3): Of the popular packages, 38%
(5,645) packages (average direct dependents: 422.4 and downloads
average: 76.1 million) had an inactive status. Interestingly, 560 of
them (average direct downstream dependents: 1369.3 and down-
loads average: 32.8 million) were deprecated. Deprecated packages
(Section 3.1.2) are a classic example of unmaintained packages
where maintainers officially declare the package unmaintained.
We also found 619 inactive maintainers who still own 645 popular
packages.

W3: 38% of popular packages were inactive, and 560 of them
were deprecated. 645 popular packages did not have any ac-
tive maintainers. An inactive package exposed 422 packages
on average to higher supply chain risk.

Too many Maintainers (W4): Among the popular packages,
421 packages (average direct dependents: 269.2 and downloads
average: 41.6 million) had an average of 34.6 maintainers.

Large packages may need more maintainers. Hence we hypothe-
size that 421 popular packages are large compared to the other pop-
ular packages. To test the hypothesis, we extracted and stored the

What are Weak Links in the npm Supply Chain? ICSE-SEIP ’22, May 21–29, 2022, Pittsburgh, PA, USA

“unpacked size” and “file count” property to measure the package
size. We created two samples: 1) 14,471 popular packages without
421 packages (average of 54 files, 696.8 MB unpacked size, and 2.4
maintainers) and 2) 14,892 popular packages (average of 55 files,
697.8 MB unpacked size, and 3.4 maintainers). We found the 421
packages added an average cost of one maintainer without any
significant difference between package size and file counts. Hence,
having too many maintainers in a JavaScript package does not
necessarily indicate packages are large.

W4: 421 popular packages had an average of 34.6 maintainers
and potentially exposed their dependents to higher supply
chain risk.

Too many contributors (W5): Among the popular packages,
23 packages (average direct dependents: 6458.04 and downloads
average: 64.2 million) had an average maintainer to contributor’s
ratio of 1:37. Therefore, on average, one maintainer has to manage
37 contributors’ to secure packages against malicious code and
malicious contributors.

W5: 23 popular packages are exposed to higher supply chain
risk due to maintainers having to manage an average of 37
contributors.

Overloaded Maintainers (W6): Among the popular packages,
9,871 (66.3%) are owned by popularmaintainers whomanagemany
packages (average direct dependents: 1039.02 and downloads aver-
age: 110.3 million). Attackers can try to compromise these main-
tainers account to exploit downstream victims at scale.

W6: 2,491 overloaded maintainers own 9,871 popular pack-
ages.

4.2 Case study #2: Installation scripts
Even though the focus was not on detecting malicious packages, our
analysis of installation scripts revealed malicious activity within
packages. Some packages have shell commands embedded directly
in the package.json file, including malicious scripts. We generated
a keyword lists from our 485 malicious packages analysis (section
3.2.2) and queried those keywords in 2.2% packages where they had
install scripts.

We identified 74 packages where the installation scripts included
keywords such as- curl, wget, /etc/shadow, /etc/passwd. Of those,
11 were found to be malicious packages and rest were benign. All
the malicious packages performed DNS lookups and send user-
sensitive data to a specific URL. Three of the malicious package
included shell commands for both windows and UNIX OS.

After three months of our initial data collection, we collected
a new security holding package list from npm to validate our re-
sult. Our findings aligned with the npm security specialists; they
identified 10 out of the 11 packages as malicious. We reported the
remaining malicious package to the npm security team.

This analysis demonstrates the risk of having a dependency on
packages that include installation scripts.

Table 1: A subset of combination signals quantified fromour
popular package analysis

Signal combination package
count

Signal combination package
count

W6 ∩ W3 ∩W4 32 W2 ∩ W3 86
W6 ∩ W3 ∩W1 5 W6 ∩ W1 17
W6 ∩ W3 ∩W2 38 W6 ∩ W2 187
W3 ∩ W4 32 W6 ∩ W3 3356

4.3 Case study #3: Data-Driven Attacker
To illustrate we used the sample of popular packages (14,892) sam-
ple for this case study. Figure 1 shows an example of a data-driven
attack that combines two of the signals: Expired Maintainer Do-
main (W1) and Unmaintained packages (W3). An attacker can scan
the npm registry for popular packages and download relevant meta-
data from the package.json file. Then an attacker can easily extract
unmaintained packages (5,645) and maintainer email addresses
(1,108) from package metadata. The next step would be looking for
domain availability in the domain registrar site (e.g., GoDaddy).

Figure 1: Data-driven Attack by combining W1 and W3

In this stage, we have identified 15 domains available for sale in
Godaddy. An attacker can purchase these domains and alter the
MX record to hijack the maintainer’s email addresses (section 3.2.1).
In general, npm requires an email address to set up an user account;
attackers can reset npm accounts by using those 15 email addresses
to access 899 npm packages.

Another example of a data-driven attack would be looking for
overloaded (W6) and inactive maintainers (W3) in popular packages.
An attacker can perform social engineering to take over these
packages. We have found 25 popular packages associated with
16 overloaded inactive maintainers. Out of 25, for three packages
(average package dependents 117 and downloads 6,906) the last
update year was 2013. Table 1 shows a subset of other possible
combinations and how they would reduce a large number of 1M+
npm packages to a small number of candidate packages for potential
supply chain attacks.

5 RQ2: SURVEY
In this section, we discuss our RQ2:How do practitioners perceive
the proposed weak links in the npm supply chain? To that end, we
conducted a survey on npm package maintainers. We selected the
top 10% (47,433) of the maintainers ranked by the number of owned
packages as survey candidates. We chose this selection criterion
for the following two reasons: The maintainers are 1) experienced
with JavaScript packages since they own many packages in npm,

ICSE-SEIP ’22, May 21–29, 2022, Pittsburgh, PA, USA N. Zahan et al.

and 2) part of a large supply chain as many packages use these
maintainer’s packages as dependencies.

Our survey is designed to capture practitioners’ views on our
proposed weak links and whether they want to be notified if any of
the proposed weak links exist in their package dependency graph.

Table 2 is a complete summary of our survey. We attached the
agreement and disagreement of practitioners regarding each weak
link signal in the second and third columns. The last column pro-
vides the percentage of the practitioner who wants to be notified
about such signals. We observed that package maintainers sup-
ported three of our proposed signals as a weak link, and they would
want to be notified about these signals existence in the package
dependency graph.

Agreement: Out of six signals, more than 50% of practitioners
supportedW1 (ExpiredMaintainer Domain), W2 (Install Scrips) and
W3 (Unmaintained Packages) as a weak link signal. We observed
that practitioners indicated a desire to be notified of weak link
signals despite not supporting the weak link signal directly. As
shown in Table 2, the percentage in the "want to be notified" column
exceeds the percentage of ”Agreed as a weak link" for W2, and W3.

Disagreement Our survey findings show that practitioners did
not support W4 (Total Number of Maintainers), W5 (Maintainer
to contributors ratio) and W6 (Packages per maintainer) as weak
link signals. More than 40% of people disagreed with these signals,
whereas less than 20% supported this as a weak link. To understand
the context behind why practitioners think otherwise, we analyzed
practitioner’s comments in the open-ended questions. For example–
“Historically, I would have agreed with “Too many maintainers” being
a risk, but as long as they are known people to you....I believe it to
be ok.” or “Many contributors is not a signal, it’s a desired state of
open source and if all are reviewed by a reliable maintainer, they
are no risk.” Both of the statements indirectly support our weak
links assumptions under certain condition like “reliable maintainer”
or “as long as maintainer are known people”. Moreover, we do
not claim that having any of these signals means a bad package;
instead, our proposed metrics are guidelines for practitioners to
make informed decisions about the use of the package.

New signals proposed by Maintainers We asked an open-
ended question for the respondents to recommend additional signals
that we should consider in future work. Out of 470 practitioners, we
received 213 responses for new signals. To label the new signals, two
researchers separately reviewed the 213 responses and compared
results. We included the new signal if the signal was raised by “at
least” two respondents. In some cases, the practitioner’s intent was
unclear, and the comment was discarded. We summarize the two
most frequently mentioned concepts:

Maintainers: 41 practitioners in some waymentioned maintain-
ers being a risk. We have identified the most frequent discussion
on maintainers and propose the following four signals:

• Ownership transfer or adding new maintainers: Any
sudden change in a package maintainers list is proposed to
be a weak link from practitioners. Practitioners would want
to know about such changes in the package dependency
graph if a package transfers the ownership or adds any new
maintainers.

• Maintainer Identity: Practitioners commented on the role
of maintainer expertise and identity verification in the supply
chain. A maintainer with a real picture, organizational back-
ground, and email address, linked social media or repository,
history of co-authoring with other maintainers will make
a maintainer reliable over any new maintainers. Although
npm provides the list of packages owned by maintainers,
enforcing maintainers to add real identity or experience may
be a big security improvement in the community.

• MaintainerTwo-FactorAuthenticationAmaintainermiss-
ing two factored authentication (2FA) for package hosting
or releasing a new version or login to the npm account is
a weak link. 2FA authentication should be enforced for all
maintainers to publish a package.

Integration of version control software: 52 (24.4%) of the re-
sponses were related to version control software(VCS), package
repository and npm integration.

• No source code repository: When a package has no or
wrong public source code repository/homepage/VCS or the
linked repository is archived, the access to review source
code is restricted, forcing users to trust a package blindly.

• npm package vs source code repository The practition-
ers raise the concern to validate the published npm package
against the code on the source code repository. Hence, all
files inside a given package must match the exact contents
in the repository.

• CI/CD pipeline: Missing CI/CD infrastructure to test code
and build of npm packages. The practitioners also mentioned
that the type of CI/CD services matters. Whether CI/CD ser-
vice providers or self-hosted infrastructure, the practitioners
prefer details on testing, code coverage, or alerts on the use
of compromised CI/CD systems from past security incidents.

• Open pull request: A package with many open issues and
pull requests (PR) indicates a poorly maintained package.
One can view if a package has open issues in npm online
repository. However, practitioners commented on adding
such information in the package dependency graph.

Since our analysis is limited to package metadata from npm, we did
not consider any repository-related weak link signal in this study
but can be considered as a future research direction.

6 LIMITATIONS
We proposed and studied several weak link signals inferred from
npm metadata and which can be used to evaluate security risks
associated with npm packages. However, we do not claim that these
weak link signals are the only ones that should be considered. Addi-
tional other signals suggested by practitioners indicate that further
research is needed on weak link identifications. Another limita-
tion of this work is that three of our six proposed signals W4 (Too
many Maintainers), W5 (Too many Contributors), W6 (Overloaded
Maintainer) were hard to empirically evaluate because we did not
have enough metadata on maintainers activities to validate these
in contrast to the clearer "ground truth" we have for W1, W2, W3.
To address this limitation, future work could try to collect and
leverage additional maintainer metadata, including commit history,
vulnerability fixes, and maintainers turnover (how maintainers of

What are Weak Links in the npm Supply Chain? ICSE-SEIP ’22, May 21–29, 2022, Pittsburgh, PA, USA

Table 2: Survey responses from 470 npm package maintainers

Weak link Signal Agreed as a
weak link

Disagreed as
a weak link

Want to be notified

W1: Amaintainer’s email address is associatedwith an expired domain 58.5% (275) 13.19%(62) 55% (258)
W2: A package has pre and post install scripts 44.8% (211) 22.34% (105) 57.4% (270)
W2: A package script has shell commands- CURL,WGET, NC,DIG 67.45% (317) 8.09% (38) 72.6% (341)
W3: A package has no update for X years 58.7% (276) 16.6%(78) 63.6% (299)
W3: A maintainer is inactive for X months/years 57.7% (271) 16.6%(78) 63.6% (299)
W4: A package has many maintainers 15.3% (72) 54.7% (257) 11.7% (55)
W5: A maintainer reviews a large number of pull requests from many
contributors

17.87% (84) 46.6% (219) 8% (38)

W6: A maintainer owns too many packages 18.7% (88) 49.4% (232) 9.6% (45)

a package are added or removed over time). Unfortunately, such
metadata is not currently available in npm. Another limitation of
our study is that we analyzed npm ecosystem only, which is the
largest package manager ecosystem today, but we did not evalu-
ate other package manager ecosystems which may have similar
weak link signals. Despite these limitations, we believe there is an
advantage of taking action to remediate such weak links instead
of waiting for an attacker to explore them first. By performing a
preliminary analysis on npm supply chain weak links, we hope to
create an awareness within the community on why we need a risk
model to mitigate such issues.

7 DISCUSSION
Through this study, we increase awareness and visibility in detect-
ing weak link signals to enhance supply chain security. Although
this study does not provide a complete solution to mitigate the pro-
posedweak link signals, we expect the findingswill aid practitioners
to predict package susceptibility in supply chain. The following
subsections discuss our recommendations on how to strengthen
supply chain security proactively instead of reacting to attacks.

7.1 Risk Model
Currently, JavaScript npm package users have access to public
data on package dependencies, as well as information about the
package maintainers. However, npm packages do not have any
overall "health" or security score. Therefore, estimating a security
risk score associated with installing and using a new package is
currently hard. Our work identifies several weak link signals which
could be used for this purpose. We envision a community effort
that could address this problem in the near future. For package
managers, npm could compute and display a risk model based on
weak link signals. Package managers would then know where their
packages stand and improve their security scores by addressing the
identified weaknesses. Such a risk model would allow package users
to make more educated, data-driven decisions and comparisons
before including new packages into their supply chains. To this
end, we suggest adding automated indicators for W1, W2, W3 in
the OpenSSF Metrics [31] and OpenSSF Scorecard [32] projects.

7.2 Control in Package Release
New packages are being released in npm by different maintainers
every day. Within a timeline of five months, the npm has hosted
more than 200K new packages, increasing the size and complexity
of the npm supply chain. As a package managers, npm could vali-
date any new release against the risk model that could be developed
following the recommendations of this study. After a particular
package is validated using the risk model, npm could publish the
package and make it available to users. If the validation is unsatis-
factory, npm could ask the maintainers of that package to improve
its security by reducing weak link signals, for instance by confirm-
ing specific requirements impacting secure CI/CD pipelines for
different OS environments or limiting the use of install scripts.

7.3 Trusted Package System
In our survey (Section 5), practitioners mentioned grading pack-
ages based on security risk, aligning with our proposed risk model
above, which may be in conjunction with the OpenSSF Metrics [31],
Scorecard [32], and Best Practices Badge [30] projects. Respondents
indicated a recommendation system in terms of different security
grades. We acknowledge that any kind of grading and measuring of
such a large ecosystem is difficult and expensive. In that case, npm
could prioritize or separate packages based on package reach in
terms of dependents and downloads: the above security risk model
could be implemented only for the most popular npm packages,
which would then form a new "trusted package system". npm could
exclude new packages or packages without any dependents or with
few downloads from this trusted package system to avoid friction
with the publication of new packages.

8 SUMMARY
In this work, we presented a framework that helps prioritization
and quantification of weak link signals in the npm supply chain. We
hope that identifying these weak link signals will help practitioners
structure discussions and analyses of such issues. As part of an
ongoing investigation, we submitted a list of suspicious packages
to the npm security team to take necessary action, such as taking
over packages from inactive maintainers, freezing the maintainer

ICSE-SEIP ’22, May 21–29, 2022, Pittsburgh, PA, USA N. Zahan et al.

account if the maintainer domains are available for sale, or measur-
ing security status of deprecated packages. Additionally, npm now
requires mandatory 2FA on maintainers of top-100 npm packages
by dependents [3]. Our second contribution consists of a list of new
weak link signals proposed by a survey of npm practitioners. We
hope our work will promote further research on weak link signal
identifications. Moreover, implementing a risk model around these
signals would allow developers to make more educated, data-driven
decisions before including packages into their software.

ACKNOWLEDGMENTS:We thank BasAlberts andMax Schafer
fromGitHub for encouraging us to pursue this research and for their
valuable feedback. We acknowledge the npm package maintainers
contributions to our study. We also thank the NCSU Realsearch
group for valuable feedback. In particular, we thank Aishwarya Seth
and Parth Kanakiya for their assistance with the qualitative analysis
of respondent open-ended responses and malicious scripts, respec-
tively. This work was funded by a Microsoft Research internship,
and by Cisco and NCSU Secure Computing Institute.

REFERENCES
[1] Bird, Christian, et al. 2009. Does distributed development affect software qual-

ity? an empirical case study of windows vista. In 2009 IEEE 31st International
Conference on Software Engineering. IEEE, 518–528.

[2] Bird, Christian, et al. 2011. Don’t touch my code! Examining the effects of own-
ership on software quality. In Proceedings of the 19th ACM SIGSOFT symposium
and the 13th European conference on Foundations of software engineering. 4–14.

[3] Myles Borins. 2022. Top-100 npm package maintainers now require
2FA. https://github.blog/2022-02-01-top-100-npm-package-maintainers-
require-2fa-additional-security/

[4] Catalin Cimpanu. 2018. Backdoored Python Library Caught Stealing SSH Creden-
tials. https://www.bleepingcomputer.com/news/security/backdoored-python-
library-caught-stealing-ssh-credentials/

[5] Codecov. 2021. Bash Uploader Security Update. https://about.codecov.io/security-
update/

[6] Benjamin E. Coe. 2018. Core contributor to the conventional-changelog ecosys-
tem had their npm credentials compromised. https://github.com/conventional-
changelog/conventional-changelog/issues/282#issuecomment-365367804/

[7] Lucian Constantin. 2018. Npm Attackers Sneak a Backdoor into Node.js Deploy-
ments through Dependencies. https://thenewstack.io/npm-attackers-sneak-a-
backdoor-into-node-js-deployments-through-dependencies/

[8] Lucian Constantin. 2020. SolarWinds attack explained: And why it was so hard
to detect. https://www.csoonline.com/article/3601508/solarwinds-supply-chain-
attack-explained-why-organizations-were-not-prepared.html

[9] Brian d foy. 2021. The Hijacking of Perl.com. https://www.perl.com/article/the-
hijacking-of-perl-com/

[10] Cezarina Dinu. 2021. SolarWinds Attack Cost Impacted Companies an Average of
$12 Million. https://heimdalsecurity.com/blog/solarwinds-attack-cost-impacted-
companies-an-average-of-12-million/

[11] Natasha Dorfman. 2021. Security holding Package. https://github.com/npm/
security-holder

[12] Duan, Ruian, et al. 2020. Towards Measuring Supply Chain Attacks on Package
Managers for Interpreted Languages. arXiv preprint arXiv:2002.01139 (2020).

[13] Eslint. 2018. Postmortem for Malicious Packages Published on July 12th, 2018.
https://eslint.org/blog/2018/07/postmortem-for-malicious-package-publishes

[14] Gabriel Ferreira, Limin Jia, Joshua Sunshine, and Christian Kästner. 2021. Con-
taining malicious package updates in npm with a lightweight permission system.
In 2021 IEEE/ACM 43rd International Conference on Software Engineering (ICSE).
IEEE, 1334–1346.

[15] Garrett, Kalil, et al. 2019. Detecting suspicious package updates. In 2019 IEEE/ACM
41st International Conference on Software Engineering: New Ideas and Emerging
Results (ICSE-NIER). IEEE, 13–16.

[16] Jack M. Germain. 2021. Lessons Learned From the SolarWinds Supply Chain
Hack. https://www.technewsworld.com/story/lessons-learned-from-the-
solarwinds-supply-chain-hack-87029.html

[17] Gonzalez, Danielle, et al. 2021. Anomalicious: Automated Detection of Anoma-
lous and Potentially Malicious Commits on GitHub. In 2021 IEEE/ACM 43rd
International Conference on Software Engineering: Software Engineering in Practice
(ICSE-SEIP). IEEE, 258–267.

[18] Ckobopoaa Hnknta. 2018. Gathering weak npm credentials. https://github.com/
ChALkeR/notes/blob/master/Gathering-weak-npm-credentials.md/

[19] Anton Hoffman. 2021. SolarWinds Orion Security Breach: A Shift In The Software
Supply Chain Paradigm. https://snyk.io/blog/solarwinds-orion-security-breach-
a-shift-in-the-software-supply-chain-paradigm/

[20] Thomas Hunter II. 2018. Compromised npm Package: event-stream.
https://medium.com/intrinsic-blog/compromised-npm-package-event-stream-
d47d08605502

[21] Maya Kaczorowski. 2020. Secure at every step: What is software supply chain
security and why does it matter? https://github.blog/2020-09-02-secure-your-
software-supply-chain-and-protect-against-supply-chain-threats-github-
blog/

[22] Swati Khandelwal. 2018. CCleaner Attack Timeline—Here’s How Hackers In-
fected 2.3 Million PCs. https://thehackernews.com/2018/04/ccleaner-malware-
attack.html

[23] Mike Mcquade. 2018. “The Untold Story of NotPetya, the Most Devastating
Cyberattack in History. https://www.idagent.com/blog/2017-08-03-notpetya-
threat-supply-chains-across-ukraine/

[24] Andrew Meneely and Laurie Williams. 2009. Secure open source collaboration:
an empirical study of linus’ law. In Proceedings of the 16th ACM conference on
Computer and communications security. 453–462.

[25] Alyssa Miller and Sharone Zitzman. 2020. The State of Open Source Security
2020. https://snyk.io/open-source-security/

[26] Nachiappan Nagappan, BrendanMurphy, and Victor Basili. 2008. The influence of
organizational structure on software quality. In 2008 ACM/IEEE 30th International
Conference on Software Engineering. IEEE, 521–530.

[27] npmjs. 2021. Deprecated Package. https://docs.npmjs.com/deprecating-and-
undeprecating-packages-or-package-versions

[28] npmjs. 2021. Specifics of npm’s package.json handling. https://docs.npmjs.com/
cli/v7/configuring-npm/package-json/

[29] Marc Ohm, Henrik Plate, Arnold Sykosch, andMichael Meier. 2020. Backstabber’s
knife collection: A review of open source software supply chain attacks. In
International Conference on Detection of Intrusions and Malware, and Vulnerability
Assessment. Springer, 23–43.

[30] OpenSSF. 2021. CII Best Practices Badge Program. https://bestpractices.
coreinfrastructure.org/en

[31] OpenSSF. 2021. Open Source Security Metrics. https://metrics.openssf.org/
[32] OpenSSF. 2021. Security Scorecards for Open Source Projects. https://github.

com/ossf/scorecard
[33] G. Polasani and S. Rubin. 2021. Embedded Malware in NPM: Coa, Rc, Ua-parser.

https://fossa.com/blog/embedded-malware-npm-coa-rc-ua-parser/
[34] Ax Sharma. 2021. Dependency-confusion. https://blog.sonatype.com/malicious-

dependency-confusion-copycats-exfiltrate-bash-history-and-etc-shadow-files
[35] Sonatype. 2020. 2020 STATE OF THE SOFTWARE SUPPLY CHAIN RE-

PORT. https://www.sonatype.com/resources/white-paper-state-of-the-
software-supply-chain-2020

[36] Sonatype. 2021. 2021 STATE OF THE SOFTWARE SUPPLY CHAIN RE-
PORT. https://www.sonatype.com/resources/state-of-the-software-supply-
chain-2021

[37] Liran Tal. 2021. Snyk uncovers malicious code activities in open source supply
chain security on the npm registry. https://snyk.io/blog/npm-security-malicious-
code-in-oss-npm-packages/

[38] Liran Tal and Juan Picado. 2019. 10 npm Security Best Practices. https://snyk.
io/blog/ten-npm-security-best-practices/

[39] The Integrity360 Team. 2019. The Adverline Breach and the Emerging Risk of Us-
ing Third-Party Vendors. https://www.wired.com/story/notpetya-cyberattack-
ukraine-russia-code-crashed-the-world/

[40] Dirk Thorleuchter and Dirk Van den Poel. 2013. Weak signal identification with
semantic web mining. Expert Systems with Applications 40, 12 (2013), 4978–4985.

[41] Ruturaj K Vaidya, Lorenzo De Carli, Drew Davidson, and Vaibhav Rastogi.
2019. Security issues in language-based sofware ecosystems. arXiv preprint
arXiv:1903.02613 (2019).

[42] Steven J. Vaughan-Nichols. 2020. SolarWinds, the World’s Biggest Security
Failure and Open Source’s Better Answer. https://thenewstack.io/solarwinds-
the-worlds-biggest-security-failure-and-open-sources-better-answer/

[43] Elisa Velarde. 2020. Nexus Intelligence Insights: Sonatype-2020-0003 - npm
malicious package 1337qq-js. https://blog.sonatype.com/sonatype-2020-0003-
npm-malicious-package-1337qq-js

[44] John Viega and Gary R McGraw. 2001. Building secure software: How to avoid
security problems the right way, portable documents. Pearson Education.

[45] Henry Zhu. 2018. eslint-scope attack. https://gist.github.com/hzoo/
51cb84afdc50b14bffa6c6dc49826b3e

[46] Zimmermann, Markus, et al. 2019. Small world with high risks: A study of
security threats in the npm ecosystem. In 28th {USENIX} Security Symposium
({USENIX} Security 19). 995–1010.

https://github.blog/2022-02-01-top-100-npm-package-maintainers-require-2fa-additional-security/
https://github.blog/2022-02-01-top-100-npm-package-maintainers-require-2fa-additional-security/
https://www.bleepingcomputer.com/news/security/backdoored-python-library-caught-stealing-ssh-credentials/
https://www.bleepingcomputer.com/news/security/backdoored-python-library-caught-stealing-ssh-credentials/
https://about.codecov.io/security-update/
https://about.codecov.io/security-update/
https://github.com/conventional-changelog/conventional-changelog/issues/282#issuecomment-365367804/
https://github.com/conventional-changelog/conventional-changelog/issues/282#issuecomment-365367804/
https://thenewstack.io/npm-attackers-sneak-a-backdoor-into-node-js-deployments-through-dependencies/
https://thenewstack.io/npm-attackers-sneak-a-backdoor-into-node-js-deployments-through-dependencies/
https://www.csoonline.com/article/3601508/solarwinds-supply-chain-attack-explained-why-organizations-were-not-prepared.html
https://www.csoonline.com/article/3601508/solarwinds-supply-chain-attack-explained-why-organizations-were-not-prepared.html
https://www.perl.com/article/the-hijacking-of-perl-com/
https://www.perl.com/article/the-hijacking-of-perl-com/
https://heimdalsecurity.com/blog/solarwinds-attack-cost-impacted-companies-an-average-of-12-million/
https://heimdalsecurity.com/blog/solarwinds-attack-cost-impacted-companies-an-average-of-12-million/
https://github.com/npm/security-holder
https://github.com/npm/security-holder
https://eslint.org/blog/2018/07/postmortem-for-malicious-package-publishes
https://www.technewsworld.com/story/lessons-learned-from-the-solarwinds-supply-chain-hack-87029.html
https://www.technewsworld.com/story/lessons-learned-from-the-solarwinds-supply-chain-hack-87029.html
https://github.com/ChALkeR/notes/blob/master/Gathering-weak-npm-credentials.md/
https://github.com/ChALkeR/notes/blob/master/Gathering-weak-npm-credentials.md/
https://snyk.io/blog/solarwinds-orion-security-breach-a-shift-in-the-software-supply-chain-paradigm/
https://snyk.io/blog/solarwinds-orion-security-breach-a-shift-in-the-software-supply-chain-paradigm/
https://medium.com/intrinsic-blog/compromised-npm-package-event-stream-d47d08605502
https://medium.com/intrinsic-blog/compromised-npm-package-event-stream-d47d08605502
https://github.blog/2020-09-02-secure-your-software-supply-chain-and-protect-against-supply-chain-threats-github-blog/
https://github.blog/2020-09-02-secure-your-software-supply-chain-and-protect-against-supply-chain-threats-github-blog/
https://github.blog/2020-09-02-secure-your-software-supply-chain-and-protect-against-supply-chain-threats-github-blog/
https://thehackernews.com/2018/04/ccleaner-malware-attack.html
https://thehackernews.com/2018/04/ccleaner-malware-attack.html
https://www.idagent.com/blog/2017-08-03-notpetya-threat-supply-chains-across-ukraine/
https://www.idagent.com/blog/2017-08-03-notpetya-threat-supply-chains-across-ukraine/
https://snyk.io/open-source-security/
https://docs.npmjs.com/deprecating-and-undeprecating-packages-or-package-versions
https://docs.npmjs.com/deprecating-and-undeprecating-packages-or-package-versions
https://docs.npmjs.com/cli/v7/configuring-npm/package-json/
https://docs.npmjs.com/cli/v7/configuring-npm/package-json/
https://bestpractices.coreinfrastructure.org/en
https://bestpractices.coreinfrastructure.org/en
https://metrics.openssf.org/
https://github.com/ossf/scorecard
https://github.com/ossf/scorecard
https://fossa.com/blog/embedded-malware-npm-coa-rc-ua-parser/
https://blog.sonatype.com/malicious-dependency-confusion-copycats-exfiltrate-bash-history-and-etc-shadow-files
https://blog.sonatype.com/malicious-dependency-confusion-copycats-exfiltrate-bash-history-and-etc-shadow-files
https://www.sonatype.com/resources/white-paper-state-of-the-software-supply-chain-2020
https://www.sonatype.com/resources/white-paper-state-of-the-software-supply-chain-2020
https://www.sonatype.com/resources/state-of-the-software-supply-chain-2021
https://www.sonatype.com/resources/state-of-the-software-supply-chain-2021
https://snyk.io/blog/npm-security-malicious-code-in-oss-npm-packages/
https://snyk.io/blog/npm-security-malicious-code-in-oss-npm-packages/
https://snyk.io/blog/ten-npm-security-best-practices/
https://snyk.io/blog/ten-npm-security-best-practices/
https://www.wired.com/story/notpetya-cyberattack-ukraine-russia-code-crashed-the-world/
https://www.wired.com/story/notpetya-cyberattack-ukraine-russia-code-crashed-the-world/
https://thenewstack.io/solarwinds-the-worlds-biggest-security-failure-and-open-sources-better-answer/
https://thenewstack.io/solarwinds-the-worlds-biggest-security-failure-and-open-sources-better-answer/
https://blog.sonatype.com/sonatype-2020-0003-npm-malicious-package-1337qq-js
https://blog.sonatype.com/sonatype-2020-0003-npm-malicious-package-1337qq-js
https://gist.github.com/hzoo/51cb84afdc50b14bffa6c6dc49826b3e
https://gist.github.com/hzoo/51cb84afdc50b14bffa6c6dc49826b3e

	Abstract
	1 Introduction
	2 Background and Related Work
	2.1 Key Terminology
	2.2 Attack Vector
	2.3 Research on Supply Chain Work

	3 RQ1: Weak link signals
	3.1 Data Process
	3.2 Weak Link Signals

	4 Case Study
	4.1 Case study #1: Popular packages
	4.2 Case study #2: Installation scripts
	4.3 Case study #3: Data-Driven Attacker

	5 RQ2: Survey
	6 Limitations
	7 Discussion
	7.1 Risk Model
	7.2 Control in Package Release
	7.3 Trusted Package System

	8 Summary
	References

