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Abstract
Node.js is a popular non-browser JavaScript platform that

provides useful but sometimes also vulnerable packages. On
one hand, prior works have proposed many program analysis-
based approaches to detect Node.js vulnerabilities, such as
command injection and prototype pollution, but they are spe-
cific to individual vulnerability and do not generalize to a
wide range of vulnerabilities on Node.js. On the other hand,
prior works on C/C++ and PHP have proposed graph query-
based approaches, such as Code Property Graph (CPG), to
efficiently mine vulnerabilities, but they are not directly ap-
plicable to JavaScript due to the language’s extensive use of
dynamic features.

In the paper, we propose flow- and context-sensitive static
analysis with hybrid branch-sensitivity and points-to infor-
mation to generate a novel graph structure, called Object De-
pendence Graph (ODG), using abstract interpretation. ODG
represents JavaScript objects as nodes and their relations
with Abstract Syntax Tree (AST) as edges, and accepts graph
queries—especially on object lookups and definitions—for
detecting Node.js vulnerabilities.

We implemented an open-source prototype system, called
ODGEN, to generate ODG for Node.js programs via abstract
interpretation and detect vulnerabilities. Our evaluation of
recent Node.js vulnerabilities shows that ODG together with
AST and Control Flow Graph (CFG) is capable of modeling
13 out of 16 vulnerability types. We applied ODGEN to de-
tect six types of vulnerabilities using graph queries: ODGEN
correctly reported 180 zero-day vulnerabilities, among which
we have received 70 Common Vulnerabilities and Exposures
(CVE) identifiers so far.

1 Introduction
Node.js is a popular JavaScript runtime environment that exe-
cutes JavaScript code outside web browsers such as being a
web server to serve the client. Node.js ecosystem including
millions of NPM packages is known to be vulnerable to a
variety of vulnerabilities, such as command injection [1, 2],
prototype pollution [3], path traversal [4], and internal prop-
erty tampering [5–7]. In the past, researchers have proposed
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various program analysis-based approaches [1–3,8–14] target-
ing individual vulnerability, such as command injection [1, 2]
and prototype pollution [3]. However, despite their success,
there is no general framework to detect all kinds of Node.js
vulnerabilities.

One recent advance of vulnerability detection in languages
other than JavaScript such as C/C++ and PHP is to build a
graph structure representing different properties of a target
program and perform graph queries to mine vulnerabilities.
For example, researchers proposed a particular graph struc-
ture, called Code Property Graph (CPG), which combines
Abstract Syntax Tree (AST), Control Flow Graph (CFG), and
Program Dependence Graph (PDG). CPG is demonstrated
to be effective in mining many types of vulnerabilities in
C/C++ [15] and PHP [16]. However, CPG does not model
object relations, such as object lookups based on prototype
chain and this object lookup especially with a bind call.
Therefore, it cannot model and detect popular object-based
JavaScript vulnerabilities, such as prototype pollution [3] and
internal property tampering [5–7].

At the same time, prior static JavaScript analysis works [1,
10–12, 17] model objects and their relations via abstract in-
terpretation [18] together with an online data structure, such
as a lattice. However, prior abstract interpretations face two
major challenges. First, previous data structures are unsuit-
able for offline (i.e., post abstract interpretation) detections
of a variety of vulnerabilities—in other words, their target
is a specific type of vulnerability. The reason is that object
information in these structures keeps changing during abstract
interpretation. Thus, vulnerability-related object information
is likely overwritten and lost in the final state. Second, ex-
isting JavaScript analysis—in terms of branch sensitivity—
interprets all branches either in sequence, which compromises
accuracy, or in parallel, which compromises scalability. Both
cases lead to many false negatives: the former due to reduced
detection capability and the latter due to excessive number of
objects.

In this paper, we propose flow- and context-sensitive static
analysis with hybrid branch-sensitivity and points-to infor-
mation to generate a novel graph structure, called Object De-
pendence Graph (ODG), using abstract interpretation. ODG
accepts graph queries for the offline detection of a wide range
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of Node.js vulnerabilities. The key insight of ODG is to rep-
resent JavaScript objects as nodes and the relations among
objects and between objects and AST nodes as edges. Specif-
ically, ODG includes fine-grained data dependencies between
objects, thus helping taint-style vulnerability detection such as
command injection. At the same time, ODG is also integrated
with CPG, or particularly Abstract Syntax Tree (AST) of CPG,
to represent and preserve all object definitions and lookups
(e.g., these via the prototype chain) in abstract interpretation
for the offline detection of object-related vulnerabilities such
as internal property tampering and prototype pollution.

We build a prototype system, called ODGEN, to generate
ODG during abstract interpretation. Specifically, ODGEN
starts from entry points and follows AST node sequence to
define and lookup objects for each AST node under abstract
scopes. Then, ODGEN records object definitions and lookups
as part of ODG, which are also used to generates CFG (if an
object lookup is related to functions) and object-level data de-
pendencies (if an object definition is derived from another ob-
ject). ODGEN is hybrid branch-sensitive because the default
of ODGEN is to abstractly interpret all branches in parallel,
but ODGEN switches back to sequential branch interpreta-
tion for a function if the number of object nodes explodes.
ODGEN has points-to information because different aliases
of an objects point to the same object node in ODG.

To demonstrate the effectiveness of ODGEN, we studied all
recent Node.js vulnerabilities in the CVE database and mod-
eled them with graph queries to ODG together with existing
graph-based code representations. Our evaluation shows that
13 out of 16 vulnerability categories can be successfully mod-
eled by graph queries to ODG+AST+CFG. We then evaluate
ODGEN on real-world Node.js packages. The results show
that ODGEN is able to detect 43 application-level zero-day
vulnerabilities with 14 false positives and we also confirmed
137 package-level zero-day vulnerabilities with 84 false posi-
tive. We received 70 CVE identifiers for these vulnerabilities.

We make the following contributions in the paper.

• We design a novel graph structure, called Object Depen-
dence Graph (ODG), to model JavaScript objects and their
relations to AST node in terms of definition and use.

• We design offline graph queries that match object-related
patterns for a variety of Node.js vulnerabilities, particularly
internal property tampering and prototype pollution.

• We build a prototype, open-source system using abstract
interpretation to generate ODG for Node.js packages.

• Our evaluation of ODGEN on real-world NPM packages
reveals 43 application-level and 137 package-level zero-day
vulnerabilities (70 being assigned with CVE identifiers).

2 Overview
In this section, we start from a motivating example and then
describe the threat model in detecting Node.js vulnerabilities.

1 function Func() {};
2 Func.prototype.x="ab";
3 myFunc = new Func;
4 if (source1)
5 myFunc[source2]=myFunc.x+source1; // internal

property tampering
6 sink(myFunc.x); // taint -style vulnerability like

command injection

Figure 1: An exemplary code.

2.1 A Motivating Example

Figure 1 shows a simple exemplary code with only six lines
in motivating the use of ODG in vulnerability detection. Both
source1 and source2 are controllable by an adversary and
sink is a sink function, such as exec in command injection.
The code has two vulnerabilities:

• Internal Property Tampering [5–7]. This vulnerability is
triggered when source2 is "__proto__". Because the pro-
totype chain of myFunc is overwritten at Line 5, the inter-
nal property x of myFunc is tampered. Specifically, when
the code tries to access myFunc.x at Line 6, the object
lookup in the property x fails as the prototype chain to
Func.prototype is broken. This vulnerability may lead
to a consequence like Denial of Service (e.g., the execution
of Line 6 fails) or privilege escalation (e.g., if myFunc.x is
used later as part of an authentication).

• Taint-style Vulnerability (e.g., command injection [1, 2]).
This vulnerability is triggered when source2 is "x". The
code will then create a new property x under myFunc di-
rectly with an adversary controllable value from source1.
Next, when the code accesses myFunc.x at Line 6,
the object lookup goes to myFunc directly instead of
Func.prototype, leading to a possible injection.

What we learned from these two vulnerabilities is that the
key is the object lookup myFunc[source2] at Line 5. Differ-
ent lookups lead to different vulnerabilities—which motivates
the design of ODG in modeling different object lookups in a
graph for vulnerability detection. Another interesting obser-
vation worth noting is that the data dependencies are different
for two vulnerability triggering conditions. In the case of in-
ternal property tampering at Line 5, we do not have a dataflow
dependency between Lines 2 and 6 and the lack of such a
dependency leads to the vulnerability. By contrast, in the case
of a taint-style vulnerability, we have a dataflow dependency
between Lines 5 and 6 (which does not exist before) and the
existence of this dependency leads to the vulnerability.

Figure 2 shows the object dependence graph (ODG) inte-
grated with code property graph (CPG) of the code in Figure 1.
The top part of Figure 2 is CPG with AST, CFG and Program
Dependence Graph (PDG) nodes and edges; the bottom part
is ODG with object/name nodes, object lookup/definition
edges to AST nodes (copied from top for clarity purpose),
and property edges. Note that because ODG has object-level
data dependencies, we do not need the statement-level data de-
pendencies in PDG as part of CPG. We include these edges in
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Figure 2: Object Dependence Graph (ODG, Bottom) Inte-
grated with Code Property Graph (CPG, Top) of the Exem-
plary Code in Figure 1. For readers’ convenience, we copied
corresponding AST nodes from top to bottom and skipped
several unimportant nodes and edges, such as __proto__ of
many objects, the global object and many built-in objects.

Figure 3: Nodes and Edges related to Graph Query for Internal
Property Tampering Detection.

the figure for the purpose of a comparison. We now describe
how to detect these two vulnerabilities via graph queries and
more importantly how ODG edges contribute to the detection.

2.1.1 Query to Detect Internal Property Tampering

We summarize the detection of this internal property tamper-
ing vulnerability using ODG as follows. From a high-level
perspective, ODGEN finds an object assignment statement via
a property lookup, which is then followed by another property
lookup statement. Both the lookup and the assigned values
in the first statement are controllable by an adversary so that
the prototype chain of the object can be tampered. Then, the
property lookup in the second statement needs to have the
tampered prototype chain involved. We extract related edges
from Figure 2, show them in Figure 3 and describe below.
• 1 AST pattern matching (obj[prop]=value).

The query finds an assignment statement with
a property lookup via AST edges, which is
myFunc[source2]=myFunc.x+source1 at Line 5 of
Figure 1.

Figure 4: Nodes and Edges related to Graph Query for Taint-
style Vulnerability Detection.

• 2 Property in 1 (prop) is controllable by an adversary.
The query follows the object-level data dependencies to
determine whether source2 is controllable by an adversary.
Therefore, the value of source2 can be __proto__.

• 3 Assigned value in 1 (value) is controllable by an
adversary. The query follows the object-level data depen-
dencies to determine whether myFunc.x+source1 can be
controllable by an adversary.

• 4 Object in 1 (obj) has a prototypical object and the
prototypical object has a property. The query follows proto-
type chain of the object myFunc to find the prototype object
myFunc.__proto__, which has a property x.

• 5 Property in 4 is used later in the control flow and
has more than one possible lookup. The query follows
the property x to find other uses of the object (myFunc.x
at Line 6 of Figure 1) and ensures that it has a control
dependency with the previous assignment.

2.1.2 Query to Detect Taint-style Vulnerability

The detection of a taint-style vulnerability using ODG can
be summarized as finding a data dependency between the
source object and the argument object in the sink function.
We extracted related edges from Figure 2 and show them in
Figure 4.

• 1 AST Pattern matching for sink function (sink(arg)).
The query finds a statement with a sink function invocation
(i.e., sink(myFunc.x) at Line 6 of Figure 1).

• 2 Object lookup for arg in 1 . The query finds the object
node in ODG.

• 3 Data dependency for the object in 2 . The query follows
object-level data dependency edges to determine whether
the sink function argument can be influenced by a source.

• 4 AST Node for the source in 3 . The query follows
object lookup edges to find the AST node for the source.

Note that the handling of myFunc[source2] is implicit in
the detection of this taint-style vulnerability. During ODG
construction, ODGEN creates a so-called wildcard object
with a property ∗ to represent myFunc[source2] for all kinds
of possibilities. Then, myFunc.x can be resolved via two
ways: one to Func.prototype.x and the other as myFunc.*.
Therefore, our query can find an object-level data dependency
between myFunc.* and source1.
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2.2 Threat Model

In this subsection, we describe the threat model of vulnerabil-
ities in scope of ODGEN. ODGEN considers all JavaScript-
level Node.js vulnerabilities but excludes low-level ones, such
as those related to the V8 engine. Specifically, such vulnera-
bilities can be categorized as two types: (i) application-level
and (ii) package-level. We now describe these two in details.

2.2.1 Application-level Vulnerabilities

An application-level vulnerability assumes that an adversary
has some controls over contents in network connection, e.g.,
an HTTP request or a response, because the application is
communicating with a malicious party. The detailed capa-
bility of the adversary also depends on the semantics of the
application. We now describe two concrete senarios:

• Adversary-controlled network request to a vulnerable
server. Say the application is a web server serving web con-
tents to clients. An adversary can send HTTP requests with
malicious contents to the server and trigger a vulnerability.
Consider rollup-plugin-serve, which has a path traver-
sal vulnerability (CVE-2020-7684) found by ODGEN. The
vulnerable code reads a file using readFile via an arbi-
trary path provided by the client without sanitization, i.e.,
the filePath value eventually comes from the request
object controllable by a possible adversary.

• Adversary-controlled network response to a vulnerable
client. Say the application is at client-side talking with
servers. An adversary, i.e., a malicious server, can send
HTTP responses with malicious contents to the application
and trigger a vulnerability. Let us take a real-world, client-
side github notification system, called github-growl, for
example. github-growl gives an alert at the client side if
a github issue is posted to a subscribed github repository.
An adversary can post an issue with a crafted title with OS
commands and trigger the command injection vulnerability
in github-growl.

2.2.2 Package-level Vulnerabilities

Packages in Node.js are libraries that are imported by other
packages or applications. Package-level vulnerabilities as-
sume that an adversary can control inputs to a vulnerable
package (i.e., those accessible via module.exports), thus
triggering the vulnerability. It is worth noting that package-
level vulnerabilities are not stand-alone and have to be com-
bined with applications for a possible exploitation.

The reason that Node.js community considers package-
level vulnerabilities—which are demonstrated in both aca-
demic works [1, 2] and many prior CVEs [5, 19, 20]—are
that one package-level vulnerability may affect many applica-
tions if the inputs to the package are not correctly sanitized.
Take the previous github-growl for example. The applica-
tion itself is not vulnerable, but the vulnerability lies in an
imported package called growl (CVE-2017-16042). In fact,
the vulnerable package also affects other applications, such

Table 1: Nodes, Edges, and Operations of ODG
Name Description
Nodes (N) A set of ODG nodes
Object node (o ∈ No) An object created in the abstract interpretation.
Scope node (s ∈ Ns) An abstract interpretation scope.
Variable node (v ∈ Nv) A variable under a scope or a property under an object.
AST node (a ∈ Na) An abstract syntax tree node.
Edges (E) A set of ODG edges
Object def. (o s−→ a) The AST node (a) defining the object o under scope s.
AST-obj lookup (a s−→ o) The object (o) used by the AST node (a) under s.
Scope hierarchy (s→ s) A parent-child scope relation.
Variable lookup (s→ v) A variable v is defined under a scope s.
Var-obj lookup (v Br−→ o) An object o that v points to with branch tags Br.
Property lookup (o→ v) A property v of an object o.
Data dependency (o→ o) Data dependency between two objects.
Control dependency (a→ a) Control dependency between two AST nodes.
Procedures (P) All the ODG-related operations
ChildEdgeType

parentNode Getting the child node of parentNode with EdgeType
AddEdgeEdgeType

src
p−→dst

Adding an edge from src node to dst node with
EdgeType and a property being either branch tags (Br)
or a scope (s)

GetEdgeEdgeType
src Getting all the edges start from src node with

EdgeType
AddNodeNodeType

a Adding a node from a with NodeType
AddObjObjType

a Adding an object node from a with ObjType in typeof
list and linking prototypical objects

LkupVars
Br(n) Looking up a variable node under the scope (s) with

branch tags (Br) and name n
LkupObjsBr(n) Looking up object nodes under scope (s) with branch

tags (Br) and name (n), i.e., {Childv
Br−→o

LkupVars
Br (n)
}

as mqtt-growl a mqtt monitor based on growl, by making
them vulnerable as well.

Other than the aforementioned application- vs. package-
level, we further classify Node.js vulnerabilities into two cat-
egories based on the vulnerability location, i.e., directly vul-
nerable where the package itself is vulnerable, and indirectly
vulnerable where an imported package is vulnerable.

3 Object Dependence Graph
In this section, we describe the definition of Object Depen-
dence Graph (ODG) and the operational semantics of the ab-
stract interpretation and the procedure of constructing ODG.

3.1 Definitions

In this section, we define an Object Dependence Graph (ODG)
as a representation, using graph notation, of all the JavaScript
objects, variables and scopes generated during abstract inter-
pretation as nodes and their relations as edges. These edges
include object and AST relations (such as object definition
and object lookup) and object relations (such as object prop-
erty and object-level data dependency).

Table 1 summarizes different ODG nodes and edges. Ob-
jects, variables, scopes and AST are all represented as nodes
and their relations as edges. We start from AST-related edges:
object definition and AST-obj lookup. The former is used to
locate the AST node where the object is defined when the
object is used later. These types of edges are unique to one
object node because an object is only defined once. The latter
is used to reproduce object lookups in abstract interpretation.
One AST node may have multiple AST-obj lookup edges be-
cause the AST node can be abstractly interpreted for multiple

146    31st USENIX Security Symposium USENIX Association



times in a for loop or a recursive call.
We then describe edges between objects, variables, and

scopes. Note that we skipped branch tags (introduced later
in Section 3.2) for a simple explanation. First, the combina-
tion of s→ s, s→ v, v→ o, and o→ v edges can be used to
resolve a statement like obj.prop during abstract interpreta-
tion. ODGEN first looks up obj under current scope using
s→ v and then follows the scope chain using s→ v to find
obj if the lookup under current scope fails. Once the variable
is found, ODGEN follows v→ o to find the object node and
then o→ v to find the prop. Then, o→ o indicates the latter
object has a data dependency on the former. For example,
the object that myFunc[source2] points to at Line 5 of Fig-
ure 1 has an object-level data dependency on both objects that
myFunc.x and source1 point to.

Next, we describe how ODG models points-to information
via v→ o edges. Say two variables a and b and an object
property obj.v point to the same object. There is only one
object node in ODG representing this object and three v→ o
edges from a, b and obj.v to the object node. Therefore, all
three object lookups will resolve to the same object node
during abstract interpretation.

3.2 Operational Semantics

In this subsection, we describe our abstract interpretation and
the construction of ODG using operational semantics shown
in Figure 5. From a high level, ODGEN abstractly interprets
each AST node (a) based on the statement (e), generates nodes
(N) and edges (E) for ODG, and then follows control-flow
edges (which are generated during abstract interpretation)
to the next AST node. During the abstract interpretation of
each AST node, the state of ODGEN is represented as a tuple
ρ = (N,E,s,Br), where N is all the ODG nodes, E is all the
ODG edges, s is the current scope node, and Br ⊆ Sbr is a set
of branch tags that represents the current conditional branch
in the branch-sensitive mode. Each branch tag is a unique
identifier representing the current conditional branch.

Now, we describe the operational semantics of the abstract
interpretation of different statements in Figure 5. First, we
start from the definition of either a variable or an object prop-
erty in Figure 5. ODGEN attempts to look up the variable or
the property from ODG. If the look-up fails, ODGEN creates
new variable and object nodes and links corresponding nodes
via edges; if the look-up succeeds, ODGEN reuses existing
variable nodes but creates new edges for these nodes.

Second, we describe branching statements (i.e., IF and
SWITCH in Figure 5). ODGEN first tries to determine the
value of the branching condition and chooses correspond-
ing branch(es). If the branching condition value cannot be
determined, the operational semantics depends on branch
sensitivity. (i) ODGEN creates a unique branching tag for
each branch in the branch-sensitive mode and attaches the
branching tag with all the nodes and edges created during the
abstract interpretation of each branch. When all the branches

of a statement are abstractly interpreted, ODGEN merges all
the objects and nodes from different branches based on the
tags for continued abstract interpretation. (ii) ODGEN sequen-
tially performs abstract interpretation for all the branches in
the branch-insensitive mode, i.e., the objects and edges cre-
ated in later branches will overwrite those created in earlier
branches. The default mode is branch sensitive, but ODGEN
will switch to branch insensitive if the number of objects ex-
plodes, i.e., exceeding a certain number (e.g., 10k), for a given
function.

Third, we describe function definition in Figure 5. ODGEN
adds a variable node if the function is not defined in an anony-
mous closure, creates an object node and edges between the
object and the variable nodes, and then handles edges related
to prototypes.

Fourth, we describe function calls in Figure 5, which has
two phase: pre-call and call. In the pre-call phase, ODGEN
looks up the function object and creates corresponding ob-
ject and control-flow edges. Then, in the call phase, ODGEN
handles all the parameters, changes the current scope and
this point, and then jumps to the AST node following a
call edge. Finally, in the return statement, ODGEN handles
return objects and creates corresponding dataflow edges. Be-
cause ODGEN handles function calls using the current scope
and returns to the exact call site, ODGEN is considered as a
context-sensitive approach.

Lastly, we describe loops in Figure 5. ODGEN abstractly
interprets a loop (and a recursive call) extensively until no
more new objects outside the loop (or recursive call) are being
looked-up. ODGEN also sets up a minimum and a maximum
limit for loops (and recursive calls).

4 ODG Queries for Node.js Vulnerabilities
In this section, we describe graph queries to ODG for all
kinds of Node.js vulnerabilities. We first present how to model
queries as several types of graph traversals in Section 4.1 and
then describe how to represent all kinds of vulnerabilities via
those graph traversals in Section 4.2.

4.1 Graph Traversals

A graph traversal, as defined in the CPG paper [15], is a
function T : P(V )→ P(V ) that maps a set of nodes to another
set of nodes on top of ODG, where V is a set of ODG nodes
and P is the power set of V . There are multiple operations
that can be performed on T :
• A function composition ◦. Two graph traversals T0 and T1

on V can be chained together by T1 ◦T0(V ).
• A function intersection

⋂
. The results of two graph traver-

sal T0 and T1 on V can be intersected by T0
⋂

T1(V ).
• A function union

⋃
. The results of two graph traversal T0

and T1 on V can be unioned by T0
⋃

T1(V ).
By those three simple operations, we can break a

complex graph traversal into multiple basic traversal
components shown in Table 2. These basic traversals
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ρ⇒ (N,E,s,Br)

(x,a,ρ)⇒ i f LkupVars
∅(x),=∅ then (N,E,s,Br) else (N,E ∪{AddEdgea

s−→o
x

s−→o′
where ∀o′ ∈ LkupOb js

Br(a)},s,Br)
(VARIABLE)

ρ⇒ (N,E,s,Br)
(let/var/const/∅ x,a,ρ)⇒ (N∪Na := {AddNodevar

a.name},E ∪{AddEdges→v
s′→na

,∀na ∈ Na},s,Br)
where

{ s′ := s (BLOCK_SCOPE) let/const
s′ := GLOBAL_SCOPE ∅
s′ := upper FUNC/FILE_SCOPE var

(VARIABLE DEF)

ρ⇒ (N,E,s,Br),(x,a.x,ρ)⇒ (Nx ,Ex ,sx ,Brx),(p,a.p,ρ)⇒ (Np ,Ep ,sp ,Brp)

(x[p]/x.const,ρ)⇒
{ (Nx ∪{pov(0),∀pov ∈ Pov},Ex ∪{AddEdgeo→v

pov(0)→pov(1)
,∀pov ∈ Pov},s,Br) i f on = /0

(Nx ,Ex ∪{AddEdgea
s−→o

a
s−→no

,∀no ∈ No},s,Br) otherwise

where
{ No := {LkupOb jox

Brx
(op .name),∀op ∈Childa

s−→o
a.p ,∀ox ∈Childa

s−→o
a.x } Pov := {(AddNodevar

p′ ,o
′),∀o′ ∈Childa

s−→o
a.x ,∀p′ ∈Childa

s−→o
a.p } x[p]

No := {LkupOb jox
Brx

(const),∀ox ∈Childa
s−→o

a.x } Pov := {(AddNodevar
const ,o

′),∀o′ ∈Childa
s−→o

a.x } x.const
(PROPERTY)

ρ⇒ (N,E,s,Br),(x1 ,a.x1 ,ρ)⇒ (Nx1 ,Ex1 ,sx1 ,Brx1 ),(x2 ,a.x2 ,ρ)⇒ (Nx2 ,Ex2 ,sx2 ,Brx2 )

(x1 op x2 ,a,ρ)⇒ (Nx1 ∪Nx2 ∪Nnew ,Ex1 ∪Ex2 ∪Edep ∪Ede f ,s,Br)
where

{ Nnew := {AddOb j∗a ,∀o1 ∈Childa
s−→o

a.x1
,∀o2 ∈Childa

s−→o
a.x2
}

Edep := {AddEdgeo→o
u′→o′ ,∀o

′ ∈ Nnew ,∀u′ ∈ {Childa
s−→o

a.x1
∪Childa

s−→o
a.x2
}}

Ede f := {AddEdgeo→a
o′→a ,∀o

′ ∈ Nnew}

(BINARY OP)

ρ⇒ (N,E,s,Br),(k1 ,a.k1 ,ρ)⇒ (Nk1 ,Ek1 ,sk1 ,Brk1 ),(v1 ,a.v1 ,ρ)⇒ (Nv1 ,Ev1 ,sv1 ,Brv1 ), . . . ,(kn ,a.kn ,ρ)⇒ (Nkn ,Ekn ,skn ,Brkn ),(vn ,a.vn ,ρ)⇒ (Nvn ,Evn ,svn ,Brvn )

({k1 : v1 , . . . ,kn : vn},a,ρ)⇒ (Oa := {AddOb j∗a}∪{nvi := AddNodevar
a.ki

,∀i ∈ {i, . . . ,n}}∪{
n⋃

i=1
Nki }∪{

n⋃
i=1

Nvi },{
n⋃

i=1
Eki }∪{

n⋃
i=1

Evi }∪Eov ∪Evo ∪{AddEdgea
br−→o

a
Br−→oa

,∀oa ∈ Oa},s,Br)

,where
{ Evo := {AddEdgev

br−→o

nvi
Br−→Childa

s−→o
a.vi

,∀i ∈ {1, . . . ,n}}

Eov := {AddEdgeo→v
ao→vi

,∀i ∈ {1, . . . ,n}}
(OBJECT LITERAL)

ρ⇒ (N,E,s,Br)

(this,a,ρ)⇒ (N,E ∪{AddEdgea
s−→o

a
s−→o′

where ∀o′ ∈ LkupOb js
Br(”this”)},s,Br)

(THIS)

ρ⇒ (N,E,s,Br)
(Bpre ,a,ρ)⇒ (N∪{as := AddNodescope

a },E ∪{AddEdges→s
s→as},as,Br)

(PRE BLOCK)
(Bpre ,a,ρ)⇒ ρBpre ,(S1 ,ρBpre )⇒ ρ1 , . . . ,(Sn ,ρn−1)⇒ ρn

(S1 , . . . ,Sn ,ρ)⇒ (Nρn ,Eρn ∪{AddEdgea→a
a.Si→a.Si+1

,∀i ∈ {1, . . . ,n−1}},sρ ,Brρn )
(BLOCK)

ρ⇒ (N,E,s,Br),(let/var/const/∅ x,a.x,ρ)⇒ (Nx ,Ex ,sx ,Brx),(e,a.e,ρ)⇒ (Ne ,Ee ,se ,Bre)

(let/var/const/∅ x = e,ρ)⇒ (Nx ∪Ne ,Ex ∪Ee/{GetEdgev→o
LkupVars

∅a.x}∪{AddEdgev
br−→o

LkupVars
∅a.x

Br−→o′
where ∀o′ ∈Childa

s−→o
a.e },s,Br)

(ASSIGN)

ρ⇒ (N,E,s,Br),( f ,a. f ,ρ)⇒ (N f ,E f ,s f ,Br f )

( f unction f (p1 , . . . , pn),a,ρ)⇒ (N f ∪{on := AddOb j f unc
a. f },E f ∪{AddEdgev

br−→o

LkupVars
∅a. f .name

Br f−−→on
}∪{AddEdgea

s−→o
a

s−→on
}∪{AddEdgeo→a

on→a},s f ,Br f )

(FUNCTION DEF)

ρ⇒ (N,E,s,Br)

( f unction (p1 , . . . , pn),a,ρ)⇒ (N f ∪{on := AddOb j f unc
∅ },E f ∪{AddEdgea

s−→o
a

s−→on
}∪{AddEdgeo→a

on→a},s,Br)
(CLOSURE DEF)

ρ⇒ (N,E,s,Br),( f ,a. f ,ρ)⇒ (N f ,E f ,s f ,Br f ),(a1 ,a.a1 ,ρ)⇒ (Na1 ,Ea1 ,sa1 ,Bra1 ), . . . ,(an ,a.an ,ρ)⇒ (Nan ,Ean ,san ,Bran )

( f (a1 , . . .an),a,ρ)⇒ (
n⋃

i=1
Nai ∪Sc ∪

n⋃
i=1

vnai ,
n⋃

i=1
Eai ∪{AddEdges

br−→s

s
br−→sc

,∀sc ∈ Sc}∪Ecall ∪Evo ,Sc ,Br)

where
{ Psd := {(AddNodescope

a′de f
,a′de f ),∀a′de f ∈ ade f }, Sc := {psd [0],∀psd ∈ Psd},ade f := {Childo→a

o′ ,∀o′ ∈Childa
s−→o

a. f },Ecall := {AddEdgea
s−→a

a
psd [0]−−−→psd [1]

,∀psd ∈ Psd}

Pvo := {(sc , AddNodevar
a.ai

, Childa
sc−→o

a.ai
),∀sc ∈ Sc ,∀i ∈ {1, . . . ,n}},vnai := {pvo [1],∀pvo ∈ Pvo},Evo := {AddEdgev

br−→o

pvo [1]
Br−→p′vo [2]

,∀pvo ∈ Pvo ,∀p′vo [2] ∈ pvo [2]}
(PRE CALL)

ρ⇒ (N,E,s,Br),( f (a1 , . . .an),apc ,ρ)⇒ ρpc ,(B,aB ,ρpc)⇒ ρB

( f (a1 , . . .an),a,ρ)⇒
{ (NρB ,EρB ,s,Br) Call

(NρB ∪{nto := AddOb job j
a }∪{ntv := AddNodevar

”this”},EρB ∪Esv ∪Evo ∪Eres ,s,Br) New

, where
{ B := {a′ .B,∀a′ ∈Childa→a

a }
Esv ;= {AddEdges→v

sρpc→ntv }

Evo := {AddEdgev
br−→o

ntv
Br−→nto

}

Eres := {AddEdgea
s−→o

a
s−→nto
}

(CALL, NEW)

ρ⇒ (N,E,s,Br),(e,a.e,ρ)⇒ (Ne ,Ee ,se ,Bre),
ρ′i f := (Ne ,Ee ,se ,Bre ∪new br(a.i f )) (branch sensitive)
ρ′else := (Ne ,Ee ,se ,Bre ∪new br(a.else)) (branch sensitive)
ρ′else := ρ′i f := (Ne ,Ee ,se ,Bre) (branch insensitive)

,(Bi f ,a.Bi f ,ρ
′
i f )⇒ ρi f ,(Belse ,a.Belse ,ρ

′
else)⇒ ρelse

(i f (e){Bi f }else{Belse},a,ρ)⇒
(Nρi f ,Eρi f ∪{AddEdgea→a

a→a.i f },sρi f ,Brρi f ) Ctrue = True
(Nρelse ,Eρelse ∪{AddEdgea→a

a→a.else},sρelse ,Brρelse ) C f alse = False
(Nρi f ∪Nρelse ,Eρi f ∪Eρelse ∪{AddEdgea→a

a→a.i f }∪{AddEdgea→a
a→a.else},s,Br) else

where Ctrue = ∧{Childa
s−→o

aρe
},C f alse = ∨{Childa

s−→o
aρe
}

(IF)

(x = x+1,a′ ,ρ)⇒ ρx+1

(x++,a,ρ)⇒ ρx+1

(x = x−1,a′ ,ρ)⇒ ρx−1

(x−−,a,ρ)⇒ ρx−1
(INC/DEC)

(x1 = x1 op x2 ,a′ ,ρ)⇒ ρx1 op x2

(x1 aop x2 ,a,ρ)⇒ ρx1 op x2

(ASSIGN OP)
ρ⇒ (N,E,s,Br)

(c,a,ρ)⇒ (N∪{ao := AddOb j∗a},E ∪{AddEdgea
s−→o

a
s−→ao
},s,Br)

(CONST)

(e1 ,a.e1 ,ρ)⇒ (Ne1 ,Ee1 ,se1 ,Bre1 ), . . . ,(en ,a.en ,ρ)⇒ (Nen ,EEn ,sen ,Bren ),

(e1 , . . . ,en ,a,ρ)⇒ (
n⋃

i=1
Nei ,

n⋃
i=1

Eei ,sen ,Bren )
(EXPRESSION LIST)

(Btry ,a.Btry ,ρ)⇒ (Nt ,Et ,st ,Brt ),(Bcatch ,a.Bcatch ,ρBtry )⇒ (Nc ,Ec ,sc ,Brc)

(try{Btry}catch{Bcatch},a,ρ)⇒ (Nt ∪Nc ,Et ∪Ec ,s,br)
(TRY-CATCH)

(e1 ,a.e1 ,ρ)⇒ ρe1 ,(B1 ,a.B1 ,ρ
′
e1
)⇒ ρB1 , . . . ,(en ,a.en ,ρ)⇒ ρen ,(Bn ,a.Bn ,ρ

′
en )⇒ ρBn where ρ′ei

=
{ (Nρei

,Eρei
,sρei

,new br(ei)∪Brρei
) (branch-sensitive)

(Nρei
,Eρei

,sρei
,Brρei

) (branch-insensitive)

(switch e1{B1} . . .en{Bn},a,ρ)⇒ (
n⋃

i=1
{i f Childa

s−→o
aρei

= True then NρBi
else ∅},

n⋃
i=1
{i f Childa

s−→o
aρei

= True then EρBi
∪{AddEdgea→a

a→a.Bi
} else ∅},s,Br)

(SWITCH)

ρ⇒ (N,E,s,Br),(e,a.e,ρ)⇒ (Ne ,Ee ,se ,Bre)

(return e,a,ρ)⇒ (Ne ,Ee ∪{AddEdgea
s−→o

a′
s−→o′

,where a′ = ASTcaller ,o′ =Childa
s−→o

a.e },s,Br)
(RETURN)

(e,a.e,ρ)⇒ ρe ,(B1 ,a.B1 ,ρe)⇒ ρB1 ,(B2 ,a.B2 ,ρe)⇒ ρB2

(e : {B1}?{B2},a,ρ)⇒ i f Childa
s−→o

a.ρe = True then ρB1 else ρB2

(TERNARY)

ρ⇒ (N,E,s,Br),(x1 ,a.x1 ,ρ)⇒ (Nx1 ,Ex1 ,sx1 ,Brx1 ), . . . ,(xn ,a.xn ,ρ)⇒ (Nxn ,Exn ,sxn ,Brxn )

([x1 , . . . ,xn ],a,ρ)⇒ (
n⋃

i=1
Nxi ∪{ao := AddOb jarray

∅ }∪{vi = AddNodevar
i ,∀i ∈ {1, . . . ,n}},

n⋃
i=1

Exi ∪{AddEdgeo→v
ao→vi

,AddEdgev
br−→o

vi
Br−→oi

,where ∀oi ∈Childa
s−→o

a.xi
,∀i ∈ {1, . . . ,n}},s,Br)

(ARRAY)

ρ⇒ (N,E,s,Br),(e,a.e,ρ)⇒ ρe ,(B,a.B,ρe)⇒ ρB

(while (e){B},a,ρ)⇒ (NρB ,EρB ,s,Br)
(WHILE)

ρ⇒ (N,E,s,Br),(e1 ,a.e1 ,ρ)⇒ (ae1 ,ρe1 ),(e2 ,a.e2 ,ρe1 )⇒ ρe2 ,(B,a.e2 ,ρe2 )⇒ ρB ,(e3 ,ρB)⇒ ρe3

( f or(e1 ;e2 ;e3){B},a,ρ)⇒ (Nρe3
,Eρe3

,s,Br)
(FOR)

loop until ρB or ρe3 does not change or the number of looping reaches the threshold

Figure 5: Operational Semantics for ODG Construction.

include object definition and use from AST (DEFob j and
USEob j), property lookups (PROPname

ob j and PROTOTYPEx[y]),
data-flows (UNSANITIZEDob j and UNSANITIZEDSINKsink),

AST pattern matching (MATCHp, VULASGMTo1[o2]=o3,
VULASGMTo1=o2[o3], and ARGn

f unc) and control-flows
(CTRn

be f ore/a f ter).
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Table 2: Basic Graph Traversals (edges are defined in Table 1)
Traversal Description
DEFob j Object Definition: (a1 = ob j)→ o→ a2.
USEob j Object use: (a1 = ob j)→ o reverse−−−→ a2.
PROPname

ob j Property Lookup: (a= ob j)→ o1→ (v= name)→ o2.

PROTOTYPEx[y]

Prototype-related Property Lookup: (a0 = x)→ o0 →
{(vk = “__proto__”)

Brk−−→ ok}k>0,Brk+1⊂Brk → (v =

y)→ ok+1, where {}k means repeating k times.
UNSANITIZEDob j A Backward Unsanitized Dataflow traversal [15].
UNSANITIZEDSINKsink A Forward Unsanitized Dataflow traversal, i.e., a re-

verse version of UNSANITIZEDob j .
MATCHp This Match Traversal finds an AST node p [15].
VULASGMTo1[o2]=o3 UNSANITIZEDo2

⋂
MATCHo1[o2]=o3

VULASGMTo1=o2[o3] UNSANITIZEDo3
⋂

MATCHo1=o2[o3]
ARGn

f unc A traversal matches a function f unc and obtains its nth
argument.

CTRn
be f ore/a f ter A traversal follows control flow edges either forward

(a f ter) or backward (be f ore).

Table 3: Graph Traversals for Different Vulnerabilities
Vulnerability Graph Queries

Internal Property Tampering
Prototypical PROTOTYPELOOKUPo1[o5] ◦ (USEo1

⋂
CTRa f ter) ◦

(UNSANITIZEDo3
⋂

VULASGMTo1[o2]=o3)

Direct VULASGMTo1=o4[o5] ◦ DEFo1 ◦
(UNSANITIZEDo3

⋂
VULASGMTo1[o2]=o3)

Prototype Pollution
__proto__ VULASGMTo1=o4[o5] ◦ DEFo1 ◦

(UNSANITIZEDo3
⋂

VULASGMTo1[o2]=o3)
constructor VULASGMTo4=o6[o7] ◦ DEFo4 ◦ VULASGMTo1=o4[o5] ◦

DEFo1 ◦ (UNSANITIZEDo3
⋂

VULASGMTo1[o2]=o3)

Injection-related Vulnerabilities
Command injection UNSANITIZED ◦ARG1

Child_process.exec

Arbitrary code exe. UNSANITIZED ◦ARG1
eval

SQL injection UNSANITIZED ◦ARG1
connection.query

Reflected XSS UNSANITIZED ◦ARG1
response.write

Stored XSS UNSANITIZED ◦ (ARG1
connection.query

⋃
(ARG1

connection.query ◦UNSANITIZED ◦ARG1
response.write))

Improper File Access

Path traversal

(UNSANITIZEDSINKPROPwrite
ARG2

callback

⋂
CTRa f ter) ◦

(UNSANITIZEDSINKReadFile
⋂

CTRa f ter) ◦
PROP∗ ◦ ARG1

callback ◦ DEF AS callback ◦
(ARG1

CreateServer
⋃

ARG2
CreateHtt pServer)

Arbitrary file write
(UNSANITIZEDSINKPROPwriteFile

f s

⋂
CTRa f ter) ◦

PROP∗ ◦ ARG1
o1 ◦ DEF AS o1 ◦

(ARG1
CreateServer

⋃
ARG2

CreateHtt pServer)

4.2 Vulnerability Descriptions

In this subsection, we describe how to use graph traversals to
represent four big categories of vulnerabilities in Table 3.

Object-related Vulnerabilities We describe graph traver-
sals of two object-related vulnerability:

• Internal Property Tampering. Internal property tampering
(IPT) [5–7] allows an adversary to alter an internal property,
either under an object directly or a prototypical object, so
that future property lookups are affected. IPT has two
main conditions: (i) a vulnerable assignment statement
controllable by an adversary, and (ii) a property lookup
after (i). We list graph traversals of both prototypical and
direct property tampering in Table 3 based on these two
conditions.

• Prototype Pollution. Prototype pollution allows an
adversary to alter a built-in function following the

prototype chain. There are traditionally two pro-
totype pollution patterns: one through __proto__
(i.e., obj.__proto__.toString) and the other through
constructor (i.e., obj.constructor.prototype). We
describe graph traversals for both patterns in Table 3: The
former has two vulnerable assignments before the target
and the latter has three.

Injection Vulnerabilities Injection vulnerabilities allow
adversaries to execute arbitrary code via injections into a
sink function via user inputs. Such vulnerabilities are de-
tected via finding a backward taint-flow from a sink to an
adversary-controlled source and we model this taint-flow as
UNSANITIZED◦ARG∗sink. The traversals for specific injection
vulnerabilities are shown in Table 3.

Improper File Access Improper file access allows an ad-
versary to either read or write files on the filesystem without
a proper permission. We model two example types of vulner-
abilities in Table 3.
• Path Traversal. Path (directory) traversal allows an adver-

sary to navigate through directories via ../ to access local
files. We model it from a web server creation, to the call-
back of HTTP(s) request, then to a file read (ReadFile),
and finally to the HTTP(s) response in Table 3.

• Arbitrary File Write. Arbitrary file read allows an adversary
to write to arbitrary files due to improper input validation.
We model the vulnerability from a web server creation, to
the callback, and then to the write to the file system in
Table 3.

5 Implementation
We implemented an open-source prototype of ODGEN at this
repository (https://github.com/Song-Li/ODGen). The
implementation has three major parts:
• (i) ODG representation and query. The ODG together with

AST and CFG is stored in memory and queried based on a
Python library, NetworkX (https://networkx.github.
io/). We also store ODG with AST and CFG using pickle,
a Python object serialization method, to the harddisk for
future queries. Note that we adopt NetworkX instead of
a graph database like Neo4j, because we find that an in-
memory graph management is more efficient than a graph
database stored on the disk, especially during abstract in-
terpretation.

• (ii) JavaScript parser. The JavaScript parser is based on
Esprima (https://esprima.org) and we added imple-
mentations to convert AST from Esprima to the standard
format of CPG, i.e., those accepted by joern [15] and ph-
pjoern [21]. Note that we adopt the standard format so that
we can compare ODG with CPG in the evaluation.

• (iii) Abstract interpretation. We implemented a cus-
tomized abstract interpretation in Python and modeled pop-
ular built-in functions via JavaScript. Our implementation
includes popular AST features that are used by >5% of

USENIX Association 31st USENIX Security Symposium    149

https://github.com/Song-Li/ODGen
https://networkx.github.io/
https://networkx.github.io/
https://esprima.org


Table 4: [RQ1] Vulnerability coverage of different code rep-
resentation for modeling vulnerability types in the CVE
database between January 2019 and September 2020.

Vulnerability type # of CVE Code Representations
CPG∗ AST+ODG AST+CFG+ODG

Prototype pollution 71 (3) 3
Command injection 67 3 3 3
Cross Site Scripting (XSS) 60 3 3 3
Path (directory) traversal 32 (3) 3
Arbitrary code execution 18 3 3 3
Improper access control 14 3 3
Internal property tampering 11 (3) 3
Denial of Service (DoS) 11
Regex DoS (ReDoS) 9
Design errors 8
Information exposure 8 3 3 3
Arbitrary file write 8 (3) 3
SQL injection 5 3 3 3
SSRF 4 3 3
CSRF 2 3 3
Insecure HTTP 2 3 3 3

Total 330
∗: CPG = AST + CFG + PDG.
(3): It can be detected but with reduced capability.

Node.js packages. Note that we set a timeout as 30 seconds
in practice of analyzing Node.js packages.

6 Evaluation
In this section, we evaluate ODGEN by answering the follow-
ing research questions.
• RQ1: What are the recent Node.js vulnerability types and

is ODG capable of modeling them?
• RQ2: What is the capability of ODGEN in detecting zero-

day vulnerabilities among a large number of real-world
NPM packages?

• RQ3: What are the False Positives (FPs) and False Nega-
tives (FNs) of ODGEN?

• RQ4: What is the code coverage and performance overhead
of the abstract interpretation?

• RQ5: How will branch-sensitivity affect the vulnerability
detection of ODGEN?
We performed our experiments on a server with 192 GB

= 6*32GB RDIMM 2666MT/s Dual Rank memory, Intel R©

Xeon R© E5-2690 v4 2.6GHz, 35M Cache, 9.60GT/s QPI,
Turbo, HT, 14C/28T (135W) Max Mem 2400MHz, and 4
* 2TB 7.2K RPM SATA 6Gbps 3.5in Hot-plug Hard Drive.

6.1 RQ1: Historical Node.js vulnerability coverage

In this subsection, we answer the research question on the
ODG’s capability in modeling real-world Node.js package
vulnerabilities. We start from querying the central database
maintained by the MITRE organization together with informa-
tion provided by the synk.io database for recent (i.e., January
2019–September 2020) vulnerabilities of Node.js packages
on NPM. In total, we retrieved 330 vulnerabilities of Node.js
packages after excluding vulnerabilities of Node.js platforms
(e.g., those with underlying memory issues). We then manu-
ally go through the vulnerability by downloading the origi-
nally vulnerable package and analyze the code together with

the descriptions on CVE and snyk.io to understand the vulner-
ability category. Table 4 shows all 16 vulnerability categories
and corresponding # of CVEs in the database.

Next, we follow the evaluation methodology adopted in
the CPG paper [15] to manually analyze what code represen-
tations are necessary in describing those vulnerability cate-
gories in Node.js. In addition to the code presentations in
CPG, we add ODG and try to understand the capability of
ODG in describing vulnerabilities. Note that the object-level
data dependency is a more fine-grained version of statement-
level data dependency in PDG, and thus we do not need to
study PDG+ODG in the code representation.

Table 4 shows the analysis results: ODGEN is able to
model 13 out of 16 vulnerability types, i.e., 302 out of 330
recent vulnerabilities. The rest vulnerability types are general
Denial of Service, Regex Denial of Service (ReDoS), and bad
designs. ODG cannot model ReDoS because it is caused by a
vulnerable regex rather than JavaScript; ODG cannot model
many other DoS because some of them are caused by the event
loop. Fortunately, Staicu et al. [22] and Davis et al. [23] either
detect or defend against DoS attacks. ODG cannot model
vulnerabilities due to bad designs, e.g., incorrect validation
of inputs—this is the same as the CPG paper, which leaves
design errors out of scope as well.

6.2 RQ2: Zero-day Node.js vulnerabilities

In this research question, we evaluate the capability of
ODGEN in detecting zero-day Node.js vulnerabilities both
at the application-level and the package-level as described in
Section 2.2. Specifically, we crawled 300K NPM packages on
February 25, 2020 and applied ODGEN with graph queries to
detect corresponding vulnerabilities. Our target vulnerability
is selected from the top ones in Table 4; we also intentionally
include those that are unique to JavaScript, such as prototype
pollution and internal property tampering.

Results. Table 5 (the “# reported” column) shows a list of
vulnerabilities found by ODGEN. Due to time limit and the
extensive number of reported vulnerabilities, we manually
checked and exploited all the vulnerable applications and
these vulnerable packages with >1,000 weekly downloads.
The “TP” column indicates that we can generate an exploit to
compromise the package if deployed locally and the vulnera-
bility is not an intended functionality of the package, and the
“FP” column that we fail to generate a working exploit or the
vulnerability is an intended functionality of the package, e.g.,
a package like shell-utils designed to execute arbitrary
OS command. Lastly, the “# CVE” column is the total number
of CVE identifiers that we obtained.

We first break down all the found vulnerabilities by
application- vs. package-level in Table 5 . The number of
application-level vulnerabilities is relatively small compared
with the one of package-level. This is because the total num-
ber of Node.js standalone applications is also much smaller
than the one of packages.
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Table 5: [RQ2] A breakdown of zero-day vulnerabilities found
by ODGEN.

#Reported #Checked TP FP #CVE
Total 2,964 264 180 84 70
App. vs. package breakdown
Application-level 57 57 43 14 6
Indirect Package-level 34 34 15 19 0
Direct Package-level 2,873 173 122 51 64
Vulnerability type breakdown
Path traversal 109 40 30 10 6
Command injection 1,253 108 80 28 52
Arbitrary code execution 183 17 14 3 8
Internal property tampering 910 46 24 22 0
Prototype pollution 492 36 19 17 4
Cross Site Scripting (XSS) 17 17 13 4 0

(a) Vulnerable code:

1module.exports = function deparam( params ) {
2 var obj = {};
3 params.replace (/\+/g, ’ ’).split(’&’).forEach(

function(v){
4 var param = v.split(’=’), key = decodeURIComponent(

param[0]), cur = obj, i = 0;
5 ... // convert string "key" to array "keys",

e.g., ’a[b][c]’ -> [’a’, ’b’, ’c’]
6 var keys_last = keys.length - 1;
7 if ( param.length === 2 ) {
8 val = decodeURIComponent( param[1] );
9 for ( ; i <= keys_last; i++ ) {

10 key = keys[i];
11 if (i < keys_last) {
12 cur = cur[key] || (keys[i+1] && isNaN( keys[i

+1] ) ? {} : []);
13 } else {
14 cur = cur[key] = val; // vulnerable location
15 }
16 }
17 }
18 });
19 return obj;
20};

(b) Exploit:

1 var deparam = require("deparam");
2 var payload = "a[__proto__][toString ]=123";
3 deparam(payload);
4 console.log({}.toString)

Figure 6: [RQ2] A package-level prototype pollution in de-
param and the exploit code (It leads to an application-level
vulnerability in PDX-Parks, a park search application).

We then break down these vulnerabilities by their types in
Table 5. The number of command injection vulnerabilities is
the most among all the vulnerability types as Node.js is com-
monly used as a client- or server-side utility application to
start OS applications. We also find many prototype pollution
vulnerabilities as this is a relatively new type. The number
of XSS vulnerabilties is small because our prototype imple-
mentation only models the simple web server provided by the
Node.js framework but not those advanced web frameworks.

Case Study. In this part, we describe a popular Node.js
package, called deparam, which has two other variations
on NPM, node-jquery-deparam and jquery-deparam. All
three packages provide reverse functions for the famous
jquery function $.param(), called deparam. The function

Table 6: Baseline Detectors (CI: Command Injection, ACE:
Arbitrary Code Execution, PT: Path Traversal, PP: Prototype
Pollution)
Name Type In-scope vuln. Original tool Our impl.∗ (LoC)
JSJoern static CI, ACE, PT phpjoern [21] 260 (Java)+415 (Python)
NodeJsScan regex CI, ACE, PT NodeJsScan [24] N/A
JSTap-vul static CI, ACE, PT JSTap [8] 134 (Python)
Synode-det static CI, ACE, PT Synode [2] 74 (Java)
PPFuzzer dynamic PP Arteau [3] N/A
Nodest static CI, ACE Nodest [1] 288 (Java)+27 (Javascript)
Ensemble The combination of the above six detectors.
∗: Because some tools are not for vulnerability detection, target another language or are
close-sourced, we have to retrofit them for evaluation of vulnerability detection. Note
that we keep their static analysis part integral.

Table 7: [RQ3-FP] FP/(FP+TP) of general-purpose static de-
tectors.

JSJoern JSTap-vul ODGen
15/(15+5) = 75% 16/(16+4) = 80% 84/(84+180) = 32%

deparam takes a parameterized query string and converts the
string back into an object.
deparam is vulnerable to prototype pollution as shown in

the simplified code of Figure 6 (a) and the exploit in Fig-
ure 6 (b). Specifically, when deparam constructs an object, it
does not check whether a property lookup follows the proto-
type chain (Line 14 of Figure 6 (a)). Therefore, an adversary
can pollute Object.prototype.toString using the code at
Line 2 of Figure 6 (b): When the for-loop at Line 9 is executed
for the second time, toString is polluted at Line 14.

Since one popular use of deparam is to parse the query
string of an URL, it will lead to application-level vulnerabili-
ties. We search the use of deparam on github and find a real-
world vulnerable web application, called PDX-Parks (https:
//github.com/meandavejustice/pdx-parks), which al-
lows a user to search for nearby parks with given latitude
and longitude. PDX-Parks adopts deparam to decompose a
query string into an object, thus being vulnerable. Specifi-
cally, we deployed the website locally and exploited the site
via http://localhost/parks?[__proto__][toString]
=123, which leads to a Denial-of-Service (DoS) for all legiti-
mate requests. The reason is that PDX-Parks adopts express,
which needs a correct toString function.

6.3 RQ3: FP and FN

In this subsection, we answer the research question of the
false positives (FPs) and false negatives (FNs) of ODGEN.

Baseline Detectors. We now introduce several baseline
vulnerability detectors for the purpose of comparing with
ODGEN in Table 6 including the technique type (static vs.
dynamic vs. regex) and their in-scope vulnerabilities. Because
we modified several existing JavaScript static analysis tools,
such as phpjoern, Synode, and JSTap, to detect Node.js vul-
nerabilities, we also make our modification open-source in
the same URL as ODGEN.

False Positives. In this part, we evaluate the false positives
(FPs) of ODGEN and compare it with two other general-
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Table 8: [RQ3-FP] A breakdown of FPs of ODGEN.
Vulnerability Unmodeled

function
Unsolvable
constraints

Intended
functionality

Command injection 7 9 12
Arbitrary code execution 1 1 1
Prototype pollution 7 8 2
Path traversal 0 10 0
Internal property tampering 0 21 1

purpose, static detectors, i.e., JSJoern and JSTap-vul. We ap-
ply both tools on 300K Node.js packages and then select the
detected packages with Top 20 weekly downloads for manual
verification. Table 7 shows the comparison results. JSJoern
and JSTap have very high FPs because they do not have points-
to information. Due to the lack of points-to information, they
have to make many over-approximations, which lead to wrong
call edges. Note that we did not compare with either dynamic
or regex based detectors on FPs, because they are using dif-
ferent techniques, which tend to have low FPs. We also did
not compare with Synode-det or Nodest due to scalability
issues: Nodest needs installations of all dependencies and
Synode-det does not support many ES6 features.

We also manually inspect all the FPs for ODGEN and
break down the FPs by vulnerability types and reasons in
Table 8. There are three main reasons: (i) unmodeled built-
in functions, (ii) unsolvable constraints, and (iii) intended
functionalities. First, our prototype of ODGEN only models
popular Node.js built-in functions, i.e., those used by more
than 5% packages. If ODGEN does not model a unpopular
function especially when it is used for sanitization, ODGEN
may report a false positive. Second, ODGEN does not solve
all the control- and data-flow constraints, but only calculates
all possible constant values if they are available. Therefore,
it is possible that ODGEN finds a path, but the constraints
along the path cannot be satisfied. Third, some packages may
be designed for a certain functionality, e.g., executing an OS
command. ODGEN will detect them as command injection,
but this is not a vulnerability.

Figure 7 shows an FP example of unsolvable constraints
for prototype pollution. ODGEN reports it as prototype pol-
lution because ODGEN finds two vulnerable assignments at
Lines 7 (in the first loop run) and 8 (in the second loop run).
Then, the assigned value at Line 8 is also controllable by the
adversary. However, although the assigned value o at Line 8
is controllable by the adversary, it happens to be the same as
the assignee cur[nameTokens[i]]. ODGEN needs to add
additional constraints for the assigned value so that it can
remove such an FP.

False Negatives. In this part, we evaluate the false negatives
(FNs) of ODGEN by using a benchmark of legacy CVE vul-
nerabilities. Specifically, we downloaded historical packages
(until February 2020) with five categories of vulnerabilities
from CVE as a benchmark. It is worth noting that we exclude
some vulnerabilities, such as XSS in this benchmark, because

1 //pixi -gl-core@1.1.4
2 function getUniformGroup(nameTokens , uniform)
3 {
4 var cur = uniform;
5 for (var i = 0; i < nameTokens.length - 1; i++)
6 {
7 var o = cur[nameTokens[i]] || {data:{}};
8 cur[nameTokens[i]] = o;
9 cur = o;

10 }
11 return cur;
12 }

Figure 7: [RQ3-FP] A false positive example of prototype
pollution reported by ODGEN.

1 // curlrequest@1 .0.1
2 exports.request = function(options ,callback){
3 if (arguments.length === 1) {
4 exports.request.call(this, options , callback);
5 ... } // request calls itself.
6 if (options.retries) {
7 exports.request(options , function (err) {}
8 ... } // request calls itself.
9 exports.copy(options); // request calls copy.

10 }
11 exports.copy = function (obj) {
12 for (var i in obj) {
13 if (Array.isArray(obj[i])) {...}
14 else if (typeof obj[i] === ’object’) {
15 copy[i] = obj[i] ? exports.copy(obj[i]) :

null; // copy calls itself.
16 } else {...}
17 }
18 return copy;
19 };

Figure 8: [RQ3-FN] A false negative example in detecting
a legacy path traversal vulnerability (multiple recursive calls
lead to object explosion and time-out).

they involve many different web frameworks, many of which
have not been modeled in our prototype implementation.

Table 9 shows the false negatives of ODGEN and exist-
ing analysis tools in detecting CVE vulnerabilities. Clearly,
ODGEN’s true positives are the highest and false negatives
are the lowest, i.e., outperforming all existing works in detect-
ing legacy CVE vulnerabilities because of the modeling of
object-level data dependencies. We breakdown all the FNs
of ODGEN into two reasons in Table 10 and describe them
below. First, we only modeled a limited number of built-in
functions, i.e., those that are adopted by more than 5% of
Node.js packages. Therefore, ODGEN may miss some data
dependencies due to lack of modeling. Second, the abstract
interpretation of ODGEN may time out and leave a partial
ODG without finishing interpreting all Node.js functions.

We also show a specific FN example in Figure 8. This
example has a path traversal vulnerability, but the abstract
interpretation cannot reach the vulnerable code because of
multiple recursive calls for both request() and copy() func-
tions. The number of object nodes for each functions is over
15k and multiple recursive calls lead to an object explosion
even with our hybrid branch sensitivity.
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Table 9: [RQ3-FN] Comparison of ODGEN with prior program analysis in detecting legacy CVE vulnerabilities.

Detector Total Command injection Prototype pollution Arbitrary code execution Path traversal Internal property tampering
TP FN TP FN TP FN TP FN TP FN TP FN

NodeJsScan 5 251 2 73 - - 2 29 1 86 - -
JSJoern 39 217 22 53 - - 5 26 12 75 - -
JSTap-vul 52 204 27 48 - - 5 26 12 75 - -
Synode-det 7 249 6 69 - - 1 30 0 87 - -
Nodest 7 249 7 68 - - 0 31 - - - -
PPFuzzer 29 23 - - 29 23 - - - - - -
Ensemble 115 141 46 29 29 23 13 18 27 60 0 11
ODGEN 189 67 67 8 40 12 20 11 55 32 7 4

Table 10: [RQ3-FN] A breakdown of reasons of FNs of
ODGEN.

Vulnerability name # Timeout # Unmodeled function
Command injection 4 4
Prototype pollution 9 3
Arbitrary code execution 5 6
Path traversal 22 10
Internal property tampering 2 2
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Figure 9: [RQ4-Coverage] Distribution of statement and func-
tion coverage (timeout: 30 seconds). One major reason of
uncovered code is the runtime inclusion of JavaScript files
depending on inputs.

6.4 RQ4: Abstract Interpretation Performance

We answer the research question on the code coverage and
performance overhead of abstract interpretation implemented
in ODGEN.

Code Coverage. In this subsection, we answer the research
question on the code coverage of ODGEN’s abstract interpre-
tation in terms of two specific metrics: statement coverage
and function coverage. Statement coverage defines the per-
centage of statements that are executed and function coverage
the percentage of functions that are analyzed by ODGEN.
Both metrics show how complete ODGEN is in analyzing
Node.js packages. Figure 9 shows a distribution graph of state-
ment and function coverages when analyzing 500 randomly-
selected Node.js packages with a timeout as 30 seconds. The
figure is almost an even distribution graph from 0 to 90% and
then shows a sudden jump in 90–100%. Actually, about 40%
of packages have 100% code coverage.

The reasons of a relatively low coverage of some packages
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Figure 10: [RQ4-Performance] CDF graph of total execution
time to finish analysis.

are as follows. First, there are some dead code that are copied
from another package or online that is not invoked from the
exported function. Second, some packages may dynamically
include a file depending on the inputs, which cannot be stati-
cally resolved. Third, some functions, particularly exported
ones, will return another function as a return value—such
returned functions will only be called if another package in-
vokes them.

Performance Overhead. In this subsection, we answer the
research question of the performance overhead of ODGEN
in generating ODG for real-world Node.js packages. Our
methodology is as follows. We randomly select 500 Node.js
packages and run ODGEN against all the packages until the
analysis finishes or time out. Figure 10 shows a CDF graph
with 30 seconds as the time-out threshold: ODGEN finishes
analyzing 85% of packages within 30 seconds when being
branch sensitive and 93% when being branch insensitive. This
evaluation shows that ODGEN is efficient in generating ODG
for most of Node.js packages.

6.5 RQ5: Branch-sensitivity

In this subsection, we answer the research question on
how branch-sensitivity affects the vulnerability detection of
ODGEN. Table 11 shows the number of detected vulnerabil-
ities under different branch sensitivities. Clearly, the hybrid
branch sensitivity adopted by ODGEN detects the largest
number of vulnerabilities: It combines both advantages, i.e.,
accuracy and scalability, with and without branch sensitivity.

Figure 11 shows why the hybrid branch sensitivity will help
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Table 11: [RQ5] the number of detected legacy CVE vulnera-
bilities with branch sensitivity enabled and disabled.
Vulnerability name Hybrid Branch-sensitive Branch-insensitive
Command injection 67 64 66
Prototype pollution 40 36 29
Arbitrary code execution 20 18 17
Path traversal 55 55 51
Internal property tampering 7 6 7
Total 189 179 170

1// limdu@0.9.4
2 exports.toSvmLight =
3 function(dataset , bias , binarize ,

firstFeatureNumber) {
4 var lines = "";
5 for (var i=0; i<dataset.length; ++i) {
6 var line = (i>0? "\n": "") + // 2 objects
7 (binarize? (dataset[i].output >0? "1": "-1"):

dataset[i].output) + // 2+1 objects
8 featureArrayToFeatureString(dataset[i].input ,

bias , firstFeatureNumber); // 54 objects
9 // 2*3*54 objects

10 lines += line;
11 }; // (2*3*54)^3=34,012,224 objects
12 ...
13 }

Figure 11: [RQ5] A false negative in detecting a legacy
command injection vulnerability with branch-sensitive mode
(The number of objects explodes and ODGEN times out).

the detection of more vulnerabilities. We annotate the source
code with the number of object nodes in branch sensitivity
enabled. Because the source code has multiple conditional ex-
pressions and a for loop, the number of object nodes quickly
increases to over 34 million. ODGEN will reduce to branch in-
sensitive mode in abstractly interpreting the code when object
explosion is detected.

7 Discussion and Limitation
Ethics: Responsible Disclosure. We have disclosed all 180
zero-day vulnerabilities to their developers together with
Proof of Vulnerability (PoV) under the help of snyk.io. All
the details of these vulnerabilities can be found in the ap-
pendix. If we do not hear from the developer, we will publicly
release the vulnerability after a 60-day disclosure window. So
far, 12 vulnerable packages have already been fixed.
Prototype Implementation and Limitation. We now discuss
several implementation choice and limitation.

• Supported JavaScript Features. Our prototype implementa-
tion follows the popularity of AST features among Node.js
packages, i.e., we implemented those that are used by more
than 5% of packages. Note that ODGEN can still analyze
packages with unimplemented features but just skip the
unimplemented part.

• Asynchronous Callbacks and Events. The prototype im-
plementation of ODGEN adopts a queue structure to store
asynchronous callbacks during registration and invokes
them one by one. We acknowledge that this is just one of
many possibilities that could happen in a real execution

and leave the modeling of an event-based call graph like
Madsen et al. [25] as a future work.

• For-loop and Recursive Call in Abstract Interpretation. As
discussed in Section 3.2, ODGEN extensively executes a
for-loop until no more new objects outside the loop are
being looked-up. ODGEN also adopts a minimum time as
three and a maximum as ten in abstractly interpreting for
loops and recursive calls. The minimum value is designed
in case some external objects are not modeled in depth; the
maximum value is designed to avoid dead loop and reduce
performance overhead.

• Dynamically-included Files. As a general limitation of
static analysis, ODGEN cannot analyze any files that are
dynamically included depending on user inputs. This can
only be analyzed with user inputs and dynamic analysis.

• Sanitization Functions. The prototype implementation
of ODGEN adopts a list of sanitization functions, e.g.,
parseInt, in analyzing dataflow. Currently, the list is gen-
erated manually and we leave it for the future work for
automatic generation.

Path-sensitivity. ODGEN is partially path-sensitive, i.e.,
ODGEN will calculate boolean, string and integer values if
they are either constant or enumerable. For an if statement, if
the value can be determined, ODGEN will abstractly interpret
only one branch; otherwise, ODGEN will abstractly interpret
both branches in parallel.

8 Related Work
Node.js Vulnerability Detection and Defense. In the past,
researchers have studied Node.js vulnerabilities and we dis-
cuss them based on their vulnerability types. Arteau [3] pro-
poses a fuzzer to explore Node.js packages for prototype
pollution. DAPP [13] uses AST and control-flow patterns to
detect prototype pollution vulnerabilities with very high false
positive and negative rates (50.6% and 84.6% respectively).
ObjLupAnsys [12] detects prototype pollution by expanding
object lookups and propagating taints during abstract interpre-
tation. Nodest [1] proposed a closed-source detection frame-
work to detect command injection vulnerabilities following
the risks as mentioned by Ojamaa et al. [26]. Then, SYN-
ODE [2] adopts a rewriting technique to enforce a template
before executing a possible injection API like eval. Many
prior works [22, 27, 28] propose to detect or defend against
regular expression DoS (ReDoS); Davis et al. [23] propose to
defend against Event Handler Poisoning (EHP) DoS attack.

Other than specific vulnerabilities, ConflictJS [29] studied
and analyzed conflicts among different JavaScript libraries;
Zimmermann et al. [30] studied the robustness of third-party
Node.js packages and their influence on other packages’ secu-
rity. Researchers [31] have also proposed to study the binding
layers of the Node.js for all kinds of vulnerabilities. Minin-
ode [32] proposes to reduce the attack surface of Node.js and
improve the overall security. As a comparison, ODGEN is the
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first general graph query-based framework of JavaScript for
efficient detection of a variety types of Node.js vulnerabilities.
Client-side JavaScript Security. JavaScript is traditionally
used at client-side as the scripting language and has been
studied [33–36] long before the appearance of Node.js. Cross-
site scripting (XSS) [37–41] and Cross-Site Script Inclusion
attack (XSSI) [42] attacks are well studied on the client
side. Malicious JavaScript has been studied by many prior
works, such as HideNoSeek [43], JShield [44] and JSTap [8],
for detection and defense. Researchers proposed to secure
JavaScript via security policies, such as content security pol-
icy. Examples are like GateKeeper [45] and CSPAutoGen [46].
Program analysis [47,48] have also been adopted at the client
side for security analysis. Many prior works [49–52] have
been proposed to restrict JavaScript, especially those from
third-party, in a subset for security. We believe that ODG is
able to analyze client-side JavaScript as well and leave those
as our future work. In the evaluation, we compared ODGEN
with JSTap, a client-side JavaScript analysis tool that can gen-
erate program dependency graph (PDG). The results show
that ODGEN can detect more vulnerability than JSTap.
Static Analysis of JavaScript. TAJS [10] and JSAI [11]
adopt abstract interpretation to analyze JavaScript programs
for more accurate call graph generation and then detect type-
related errors. Madsen et al. [25] propose event-based call
graph to detect problems reported on StackOverflow. Brave’s
PageGraph [53] and its predecessor AdGraph [54] model the
relations between different browser objects like scripts, DOM
and AJAX during runtime with concrete inputs. JAW [55]
models browser objects in a Hybrid Property Graph, which
contains Event Registration, Dispatch and Dependency Graph,
Inter-Procedural Call Graph, AST, PDG, and CFG. Guarnieri
et al. [9] propose to adopt heap graph to model local object re-
lations. SAFE [56] and follow-ups [17,57] convert JavaScript
to an IR form and adopt an internal structure for abstract in-
terpretation. As a comparison, the lattice structure in TAJS
and JSAI, the heap graph by Guarnieri et al., the Object Prop-
erty Graph in the aforementioned ObjLupAnsys [12], and
the data structure in SAFE change during abstract interpreta-
tion, which cannot be used offline for graph query, because
many object-related information gets lost as the interpretation.
PageGraph, AdsGraph and Hybrid Property Graph are offline
structure, but they are designed to include browser objects
rather than JavaScript objects. That is, none of these three can
be used to detect JavaScript vulnerabilities in this paper.
General Vulnerability Detection Framework. Previous
works, such as Program dependence graph (PDG) [58] and
Combined C Graph (CCG) [59], have proved that it is effec-
tive to combine program analysis with graph representation
to model data and control dependencies for operations in a
program. Based on graph representation, many program anal-
ysis problems can be converted to graph-related problems,
such as graph-reachability problem [60], graph query prob-
lem [15,16,61–63]. Specifically, Code Property Graph (CPG)

is proposed by Yamaguchi et al. [15] as a general frame work
combining CFG, DFG, and AST to detect C/C++ vulnerabil-
ities. Later on, CPG is ported to PHP by Backes et al. [16]
as an open-source tool called phpjoern [21]. As a compar-
ison, ODGEN models object dependencies, such as object
lookup/definition, which are unavailable in any of existing
graph structures.

Other than graph-based frameworks, in the past, code anal-
ysis [64–68] has been also widely used to detect various vul-
nerabilities on different platforms. The concept of objects
and relations between objects are also adopted in traditional
program analysis and defenses [69, 70], such as Object Flow
Integrity [70]. The concepts of objects in JavaScript are differ-
ent from those on C/C++ due to the existence of prototype and
runtime resolution, which makes traditional object analysis
not applicable on JavaScript.

9 Conclusion
In this paper, we propose to generate a novel graph struc-
ture, called Object Dependence Graph (ODG), via abstract
interpretation. ODG accepts graph queries to mine a vari-
ety of Node.js vulnerabilities, especially those related to ob-
jects such as prototype pollution and internal property tamper-
ing. We implement a prototype, open-source system, called
ODGEN, to construct ODG via context- and flow-sensitive
static analysis with hybrid branch sensitivity and points-to
information. Our evaluation reveals 180 zero-day vulnerabil-
ities and 70 of them have already been assigned with CVE
identifiers.
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Appendix
In this appendix, we list all the zero-day vulnerabilities found
by ODGEN in Tables 12, 13, 14, 15, 16, and 17.
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Table 12: A List of command injection zero-day vulnerabilities found by ODGEN (80 in total).
Package Name Version Status CVE # Package Name Version Status CVE #
adb-driver 0.1.8 confirmed CVE-2020-7636 pomelo-monitor 0.3.7 confirmed -
apiconnect-cli-plugins 6.0.2 confirmed CVE-2020-7633 promise-probe 0.1.8 fixed CVE-2019-10791
aws-lambda 1.0.4 fixed CVE-2019-10777 pulverizr 0.7.0 confirmed CVE-2020-7603
blamer 0.1.13 fixed CVE-2019-10807 push-dir 0.4.1 confirmed CVE-2019-10803
clamscan 1.1.0 confirmed CVE-2020-7613 pygmentize-bundled 2.3.0 confirmed -
closure-compiler-stream 0.1.15 confirmed CVE-2020-7604 rpi 0.0.3 confirmed CVE-2019-10796
codecov 3.6.1 fixed CVE-2020-7596/7597 serial-number 1.3.0 confirmed CVE-2019-10804
compass-compile 0.0.1 confirmed CVE-2020-7635 strong-nginx-controller 1.0.2 confirmed CVE-2020-7621
compile-sass 1.0.3 fixed CVE-2019-10799 truffle-compile-vyper 1.0.27 submitted -
curling 0.3.0 confirmed CVE-2019-10789 umount 1.1.6 confirmed CVE-2020-7628
devcert-sanscache 0.4.6 fixed CVE-2019-10778 vsce 1.71.0 confirmed -
diskusage-ng 0.2.4 confirmed CVE-2020-7631 connection-tester 0.2.0 confirmed CVE-2020-7781
docker-compose-remote-api 0.1.4 confirmed CVE-2020-7606 buns 1.1.6 confirmed CVE-2020-7794
effect 1.0.4 confirmed CVE-2020-7624 monorepo-build 0.1.9 confirmed CVE-2020-28423
enpeem 2.2.0 confirmed CVE-2019-10801 s3-kilatstorage 0.5.6 confirmed CVE-2020-28424
fsa 0.5.1 confirmed CVE-2020-7615 geojson2kml 0.1.1 confirmed CVE-2020-28429
fsh 0.0.2 confirmed - image-tiler 2.0.1 confirmed CVE-2020-28451
get-git-data 1.3.1 confirmed CVE-2020-7619 curljs 0.1.2 confirmed CVE-2020-28425
git-add-remote 1.0.0 confirmed CVE-2020-7630 nuance-gulp-build-common 0.0.1 confirmed CVE-2020-28430
git-diff-apply 0.19.7 fixed CVE-2019-10776 ffmpeg-sdk 0.0.5 confirmed CVE-2020-28435
git-revision-webpack-plugin 3.0.4 confirmed CVE-2020-7612 lycwed-spritesheetjs 1.2.2 confirmed -
git-tag 0.2.0 confirmed - wangzhe 1.0.0 confirmed -
giting 0.0.7 fixed CVE-2019-10802 karma-ckb-reporter 0.0.3 confirmed -
gulp-anybar 1.0.1 confirmed - surfboard 0.1.0 confirmed -
gulp-scss-lint 1.0.0 confirmed CVE-2020-7601 ensure-module-latest 1.0.9 confirmed -
gulp-styledocco 0.0.3 confirmed CVE-2020-7607 geojson2 0.1.8 confirmed -
gulp-tape 1.0.0 confirmed CVE-2020-7605 kill-process-occupying-port 0.0.1 confirmed -
heroku-addonpool 0.1.15 confirmed CVE-2020-7634 shelljs.exec 1.1.8 confirmed -
im-resize 2.3.2 fixed CVE-2019-10787 lycwed-spritesheetjs 1.2.2 confirmed -
install-package 0.4.0 confirmed CVE-2020-7629 theme-core 0.2.5 confirmed -
jscover 1.0.0 confirmed CVE-2020-7623 wc-cmd 1.0.9 confirmed -
karma-mojo 1.0.1 confirmed CVE-2020-7626 gulp-tvm-tsc 0.3.4 confirmed -
lsof 0.1.0 confirmed CVE-2019-10783 nuance-gulp-build-packers-dotnet 0.0.0 confirmed -
mysql-dumper 6.3.0 confirmed - stream-jspm 0.0.1 confirmed -
network-manager 1.0.2 confirmed CVE-2019-10786 hot-update-package 1.0.6 confirmed -
node-key-sender 1.0.11 confirmed CVE-2020-7627 pstracker 0.0.4 confirmed -
node-mpv 1.4.3 confirmed CVE-2020-7632 tile-web 3.0.0 confirmed -
node-prompt-here 1.0.1 confirmed CVE-2020-7602 tvm 0.8.14 confirmed -
npm-programmatic 0.0.12 confirmed CVE-2020-7614 nmcli-wrapper 0.7.0 confirmed -
op-browser 1.0.6 confirmed CVE-2020-7625 gulp-shellexec 0.4.4 confirmed -

Table 13: A List of prototype pollution zero-day vulnerabilities found by ODGEN (19 in total).
Package Name Version Status CVE # Package Name Version Status CVE #
asciitable.js 1.0.2 confirmed CVE-2020-7771 fun-map 3.3.1 confirmed CVE-2020-7644
bayrell-nodejs 0.8.0 submitted - grunt-util-property 0.0.2 confirmed CVE-2020-7641
blindfold 1.0.1 submitted - lodash._baseset 4.3.0 submitted -
class-transformer 0.2.3 fixed CVE-2020-7637 jquery-deparam 0.5.3 submitted -
debt 0.0.4 submitted - magico 1.1.1 submitted -
dnspod-client 0.1.3 submitted - node-file-cache 1.0.2 submitted -
draft 0.2.3 submitted - object-helpers 0.0.4 submitted -
extend2 1.0.1 submitted - parse-mockdb 0.4.0 submitted -
fetch-wrap 0.1.2 submitted - propper 1.3.0 submitted -
field 1.0.1 submitted -

Table 14: A List of Arbitrary Code Execution zero-day vulnerabilities found by ODGEN (14 in total).
Package Name Version Status CVE # Package Name Version Status CVE #
@flammae/helpers 0.0.3 submitted - lisp-json-to-js 0.4.1 submitted -
access-policy 3.1.0 comfirmed CVE-2020-7674 mosc 1.0.0 confirmed CVE-2020-7672
alt-class 0.0.3 comfirmed - node-extend 0.2.0 comfirmed CVE-2020-7673
cd-messenger 2.7.26 comfirmed CVE-2020-7675 node-import 0.9.2 confirmed CVE-2020-7678
couchdb-ddoc-test 1.0.0 comfirmed - node-rules 4.0.2 fixed CVE-2020-7609
inline-ng2-resources 1.1.0 submitted - pixl-class 1.0.2 fixed CVE-2020-7640
json-log-filter 0.1.2 submitted - thenify 3.3.0 comfirmed CVE-2020-7677
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Table 15: A List of Path Traversal zero-day vulnerabilities found by ODGEN (30 in total).
Package Name Version Status CVE # Package Name Version Status CVE #
11xiaoli 1.1.0 submitted - rollup-plugin-dev-server 0.4.3 submitted -
123qwe 1.0.0 submitted - rollup-plugin-serve-favicon 0.4.7 confirmed CVE-2020-7684
1997server 1.3.0 submitted - rollup-plugin-serve 1.0.1 confirmed CVE-2020-7683
allserverming 1.0.0 submitted - rollup-plugin-server 0.7.0 confirmed CVE-2020-7686
entryhttp 1.0.0 submitted - static-server-g 1.0.0 submitted -
fanwen 1.0.0 submitted - thy_server 1.6.0 submitted -
fast-http 0.1.3 confirmed CVE-2020-7687 uekserver 1.0.0 submitted -
jbbmyplay 1.0.1 submitted - w1703_server 1.2.0 submitted -
lddll 1.0.0 submitted - waterfallhzw 1.0.0 submitted -
lhm-ssi 1.0.1 submitted - wu456 1.0.0 submitted -
lserver 1.0.9 submitted - xuewarp 1.0.0 submitted -
marked-tree 0.8.1 confirmed CVE-2020-7682 xxx-server-yyy 1.0.1 submitted -
marscode 1.0.1-0 confirmed CVE-2020-7681 zlymain 1.0.0 submitted -
musciplayer-szj 2.0.0 submitted - zzl-server 1.0.5 submitted -
myserver123 1.0.0 submitted - xhttpserver 0.0.6 submitted -

Table 16: A List of XSS zero-day vulnerabilities found by ODGEN (13 in total).
Package Name Version Status CVE # Package Name Version Status CVE #
buildseverlzz 1.0.0 submitted - sheepy 0.1.1 submitted -
hxsstatic 1.0.8 submitted - simple_server 0.1.0 submitted -
lserver 1.0.9 submitted - simplewebserver 1.2.0 submitted -
lymph-server 1.2.0 submitted - xxx-server-yyy 1.0.1 submitted -
lyss 0.0.1 submitted - zzl-selver 1.0.3 submitted -
min-http 1.0.6 submitted - zzl-server 1.0.5 submitted -
node-servers 1.0.3 submitted -

Table 17: A List of internal property tampering zero-day vulnerabilities found by ODGEN (24 in total).
Package Name Version Status CVE # Package Name Version Status CVE #
anyargs 1.0.5 submitted - leFunc 1.2.5 submitted -
citeproc-js-node 0.0.3 submitted - lethexa-adt 0.0.13 submitted -
diso.router 6.0.3 submitted - optometrist 1.0.1 submitted -
domlib 1.0.7 submitted - resorting-key 1.0.0 submitted -
hyperdrive-ui 4.0.2 submitted - solar 0.1.6 submitted -
x-validator 0.1.0 submitted - immutable-record-class 3.8.1 submitted -
ini 2.0.0 submitted - lazy-cache 2.0.2 submitted -
acos-kelmu 0.1.1 submitted - bare 0.0.2 submitted -
charity-base-form 1.9.0 submitted - common-codegen-tests 2.2.3 submitted -
cookiemonster 1.1.0 submitted - deherd-scraper-engine 1.2.11 submitted -
ikagaka.nar.js 3.0.3 submitted - jquery-register 1.1.1 submitted -
ndx-modified 0.1.2 submitted - ng-pipe 1.4.10 submitted -
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